М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Kam54
Kam54
03.12.2022 03:15 •  Алгебра

Как нарисовать график функции y = f(x), если известно, что он возрастает и убывает на определенных интервалах?​

👇
Открыть все ответы
Ответ:
hyyeblan5577
hyyeblan5577
03.12.2022
Пусть длина наименьшей стороны клумбы х м, т.к. вторая сторона длиннее на 5м, то её длина составит (х+5)м. Вокруг клумбы идёт дорожка шириной 1 м, значит длина стороны дорожки составит (1+х+5+1)=(х+7)м - широкая сторона, и меньшая сторона составит (1+х+1)м=(х+2)м. Площадь дорожки составляет 26м² и складывается из площади 4-ч прямоугольников, из которых стороны двух длинных прямоугольников равны по (х+7)м и 1м. Площадь этих прямоугольников равна и составляет S1.2=1×(х+7)м, и 2 прямоугольника со сторонами 1м и (х+2)м, и площади их равны 1×(х+2)м=(х+2)м. Вся площадь дорожки составит 2×(х+7)+2×(х+2)=26. Делим обе части уравнения на 2, получаем: 

(х+7)+(х+2)=13

2х+9=13

2х=13-9

2х=4

х=2

Таким образом, наименьшая сторона клумбы равна 2м, тогда наибольшая 2+5=7м.
4,7(89 оценок)
Ответ:
86543949776944
86543949776944
03.12.2022

1. С графика квадратичной функции.

x² + 3x - 18 < 0.

Рассмотрим функцию у = х² + 3х - 18. Графиком этой функции является парабола, ветви которой направлены вверх.

Выясним, как расположена эта парабола относительно оси Ох. Для этого решим уравнение х² + 3х - 18 =0:

D = 3² - 4 · 1 · (-18) = 9 + 72 = 81; √81 = 9

х₁ = (-3 + 9)/(2 · 1) = 6/2 = 3,

х₂ = (-3 - 9)/(2 · 1) = -12/2 = -6.

Значит, парабола пересекает ось Ох в двух точках, абсциссы которых равны -6 и 3.

Покажем схематически, как расположена парабола в координатной плоскости (см. рис.) Из рисунка видно, что функция принимает отрицательные значения, когда х∈(-6; 3). Следовательно, множеством решений неравенства x² + 3x - 18 < 0 является промежуток (-6; 3).

2. Методом интервалов.

Метод интервалов применяется в случае, когда левая часть нервенства имеет многочлена, а правая равна 0. В этом случае находят корни многочлена, располагают их в порядке возрастания, наносят их на числовую ось, а затем справа налево располагают знаки "+" и "-", чередуя их, если корень некратный, и сохраняя знак, если корень кратный.

x² + 3x - 18 < 0

Разложим на множители многочлен x² + 3x - 18, для чего решим квадратное уравнение x² + 3x - 18 = 0:

D = 3² - 4 · 1 · (-18) = 9 + 72 = 81; √81 = 9

х₁ = (-3 + 9)/(2 · 1) = 6/2 = 3,

х₂ = (-3 - 9)/(2 · 1) = -12/2 = -6.

Значит, x² + 3x - 18 = (х - 3)(х + 6).

Отметим на координатной прямой точки -6 и 3 и укажем знаки многочлена на каждом из полученных интервалов (см. рис.).

Множество решений неравенства: х∈(-6; 3).

ответ:(-6; 3).



Решите неравенство используя график квадратичной функции и метод интервалов: x^2+3x-18< 0
4,5(78 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ