ответ: 3
Объяснение: Для простоты работайте по действиям.
1. Упростите выражение в скобках:
Сначала в знаменателях дробей внутри скобок вынесите общий множитель "а", получите знаменатели в 1-ой дроби а(а+3в), а во второй дроби а(а-3в); приведите эти две дроби к общему знаменателю, домножив 1-ю дробь на (а-3в),а 2-ю на (а+3в).
Получите одну дробь со знаменателем а(а²-9в²), а в числителе -
(а-3в)² - (а+3в)²,раскройте в числителе скобки и приведите подобные слагаемые, получим числитель дроби -12ав,а в знаменателе замените а(а²-9в²) на -а(9в²-а²) для того, чтобы позже легче сократить овую дробь.
2) Полученный ответ надо разделить на следующую дробь или умножить на обратную. После сокращения получите -12ав/-4ав = 3.
если решить как ваше уравнение то корень будет иррациональным так как по схеме горнера уже после 3 проверки идут корни очень плохие!
(5x)^(2x+1) = 5^(2x+1)*x^(2x+1) = 5*5^(2x)*x^(2x+1)
5*5^(2x)*x^(2x+1) + 5^(2x) = 5^(2x)*(5*x^(2x+1) + 1) = 750 = 6*5^3
Варианты:
{ 5^(2x) = 5^3, x = 3/2
{ 5*x^(2x+1) + 1 = 6, 5*x^(2x+1) = 5, x^(2x+1) = 1, (3/2)^4 = 1 - не подходит
{ 5^(2x) = 5^2, x = 1
{ 5*x^(2x+1) + 1 = 30, 5*x^(2x+1) = 29 - не подходит
{ 5^(2x) = 5, x = 1/2
{ 5*x^(2x+1) + 1 = 150, 5*x^(2x+1) = 149 - не подходит
{ 5^(2x) = 1, x = 0
{ 5*x^(2x+1) + 1 = 750, 5*x^(2x+1) = 749 - не подходит
может ошибка у вас там так как
(5)^(2x+1) +5^2x = 750
5^2x*5+5^2x=750
5^2x=t
6t=750
t=125
2x=3
x=3/2
теперь ставим
3/2^2+3/2 = 15/4