Два трактора,работая вместе,вспахали поле за 2 дня. За сколько дней может вспахать всё поле каждый трактор,работая отдельно,если один из них может сделать это на 3 дня быстрее чем другой?
(1) X=Y-3
(2) X+Y=2
Подставляем выражение (1) в (2)
Y-3+Y=2
Y+Y=2+3
2*Y=5
Y=5/2=2.5 - надо дней для работы второго трактора
Подставляем Y в (1)
X=Y-3=2,5-3=-0,5 - надо дней для работы первого трактора
Но т.к. время не может быть величиной отрицательной, то делаем вывод что задание задано НЕ правильно (или получается, что один трактор пашет, а заодно и таскает на тросу второй трактор - он для пашущего трактора баласт)
b₁-1=a₁ b₂=a₂ b₃-19=a₃ Основное свойство арифметической прогрессии: разность двух соседних слагаемых одна и та же и равна d d=a₂-a₁=a₃-a₂ b₂-(b₁-1)=b₁q-b₁+1 b₃-19-b₂=b₁q²-b₁q-19 и b₁q-b₁+1=b₁q²-b₁q-19 или b₁q²-2b₁q+b₁-20=0.
Решаем систему двух уравнений с двумя неизвестными: b₁(1+q+q²)=65 ⇒b₁q²+b₁=65-b₁q и подставим во второе уравнение. иb₁q²-2b₁q+b₁-20=0.
Получим 65-b₁q-2b₁q-20=0 или 45=3b₁q или b₁q=15
Подставим в первое уравнение: b₁q²=b₁q·q=15q 15q+b₁=65-15 b₁=50-15q
b₁q=15 (50-15q)·q=15 или (10-3q)·q=3 3q²-10q+3=0 D=100-36=64 q₁=(10+8)/6=3 q₂=(10-8)/6=1/3 - не удовлетворяет условию задачи ( геометрическая прогрессия возрастающая) b₁=5
Примем Х-время работы первого трактора
Примем Y-время работы второго трактора
Тогда:
X+Y=2
Y-3=X
Два трактора,работая вместе,вспахали поле за 2 дня. За сколько дней может вспахать всё поле каждый трактор,работая отдельно,если один из них может сделать это на 3 дня быстрее чем другой?
(1) X=Y-3
(2) X+Y=2
Подставляем выражение (1) в (2)
Y-3+Y=2
Y+Y=2+3
2*Y=5
Y=5/2=2.5 - надо дней для работы второго трактора
Подставляем Y в (1)
X=Y-3=2,5-3=-0,5 - надо дней для работы первого трактора
Но т.к. время не может быть величиной отрицательной, то делаем вывод что задание задано НЕ правильно (или получается, что один трактор пашет, а заодно и таскает на тросу второй трактор - он для пашущего трактора баласт)
Подробнее - на -
Объяснение: