Дано уравнение: x=−7x+40x−10 Домножим обе части ур-ния на знаменатели: -10 + x получим: x(x−10)=1x−10(−7x+40)(x−10) x(x−10)=−7x+40 Перенесём правую часть уравнения в левую часть уравнения со знаком минус.
Уравнение превратится из x(x−10)=−7x+40 в x(x−10)+7x−40=0Раскроем выражение в уравнении x(x−10)+7x−40=0Получаем квадратное уравнение x2−3x−40=0 Это уравнение вида a*x^2 + b*x + c. Квадратное уравнение можно решить с дискриминанта. Корни квадратного уравнения: x1=D‾‾√−b2a x2=−D‾‾√−b2a где D = b^2 - 4*a*c - это дискриминант. Т.к. a=1 b=−3 c=−40 , то D = b^2 - 4 * a * c = (-3)^2 - 4 * (1) * (-40) = 169 Т.к. D > 0, то уравнение имеет два корня. x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) или x1=8 x2=−5
D(f)∈(-∞;∞)
Асимптот нет,непериодическая
f(-x)=-x³+12x=-(x³-12x)
f(x)=-f(-x) нечетная
x=0 y=0
y=0 x(x²-12)=0 x=0 x=2√3 x=-2√3
(0;0);(2√3;0);(-2√3;0)-точки пересечения с осями
f`(x)=3x²-12=3(x-2)(x+2)=0
x=2 x=-2
+ _ +
(-2)(2)
возр max убыв min возр
уmax=-8+24=16
ymin=8-24=-16
f``(x)=6x=0
x=0 y=0
(0;0)-точка перегиба
- +
(0)
выпукл вверх вогнута вниз