Существует два перевода из периодической дроби в обыкновенную: 1) надо из числа, стоящего до второго периода, вычесть число, стоящее до первого периода и записать эту разность в числитель, а в знаменателе написать цифру 9 столько раз, сколько цифр в периоде, и после девяток дописать столько нулей, скока цифр между запятой и первым периодом: 0,11(6) 116-11 105 7 0,11(6)=== 900 900 60 235-2 233 0.2(35)= = 990 990 2) а)Найдем период дроби, т.е. подсчитаем, сколько цифр находится в периодической части. К примеру, это будет число k. б)Найдем значение выражения X · 10k в)Из полученного числа надо вычесть исходное выражение. При этом периодическая часть «сжигается», и остается обычная дробь. г)В полученном уравнении найти X. Все десятичные дроби переводим в обыкновенные. 0,11(6)=Х k=1 10^(k)=1 тогда x*10=10*0,116666...=1,166666... 10X-X=1,166666...-0,116666...=1,16-0,11=1,05 9X=1,05 105 7 X== 900 60 0.2(35): k=2 10^k=100 100X=0.2353535...*100=23,535353 100X-X=23,535353-0.2353535=23,3 99x=23,3 233 x= 900
1. Доказать тождество
sinα +sin5α+sin7α +sin11α = 4cos2α*cos3α*sin6α
sinα +sin5α+sin7α +sin11α =(sin5α +sinα) +(sin11α+sin7α) =
2sin3α*cos2α +2sin9α*cos2α =2cos2α*(sin9α+sin3α)=
2cos2α*2sin6α*cos3α =4cos2α*cos3α*sin6α
- - - - - - -
2.Найдите значение выражения sin2α*cos5α -sinα*cos6α ,если sinα = -1/√3
- - -
Cначала упростим выражение:
sin2α*cos5α -sinα*cos6α =2sinα*cos∝*cos5α - sinα*cos6α =
sinα(2cos5α*cos∝ - sinα*cos6α )=sinα*(cos6∝+cos4α -cos6α ) =
sinα*cos4α =sinα*(1 - 2sin²2α) = sinα*( 1 -2*(2sinα*cosα)² )=
= sinα*( 1 -8sin²α*cos²α ) =sinα*( 1 -8sin²α*(1 -sin²α) ) = || sinα =-1/√3 ||
= (-1/√3)*( 1 -8*(-1/√3)² *(1 - (-1/√3)² ) = - 1/√3 *( 1- (8/3)*(2/3) ) = 7√3 / 27