М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lydmilagerasim
lydmilagerasim
22.04.2020 02:09 •  Алгебра

8
4) 2x +
, при х = 5; 0,5; 1; 3;. ​

👇
Открыть все ответы
Ответ:
kozakova13
kozakova13
22.04.2020

Объяснение:

2. а14 равен 2,9,

а10 равен 0,5. Найдите первый член  и разность этой арифметической прогрессии.

Решение.  По формуле  an=(n-1)в, находим:

а14=а1+13d;

а10=а1+9d;

2,9=а1+13d;  [*(-1)]

0.5 =a1+9d;

-2.9=-a1-13d;

0.5=a1+9d;

Складываем:

-2,9+0,5=-13d+9d

-2.4=-4d;

d= 0.6;

Найдем a1:

0.5=a1+9*0.6;

0.5=a1+5.4;

a1=5.4-0.5=4.9.

a1=4.9.

***

3)  Найдите сумму первых двадцати девяти членов арифметической прогрессии -3,5; -3,7;...

Решение.  

а1=-3,5;  а2= -3,7; ...   d=-3.7  - (-3.5)= -3.7 + 3.5=  - 0.2;

а29=-3.5 + (29-1) *(-0.2)  = -3.5 +28*(-0.2)=-3.5 - 5.6 = - 9.1;

Сумма первых n членов арифметической прогресс равна

Sn=  n*(a1+an) / 2.

S=29 * (a1+a29)/2 = 29*(-3.5 -9.1)/2 = 29* (-12.6)/2=  - 365.4 / 2 =  -182.7

S29= -182,7.

***

4)  Сколько первых членов арифметической прогрессии

–12;   -10; -8; ...

нужно сложить, чтобы получить -36?

Решение.  

Sn=-36;  a1=-12;  d=-8 - (-10)=-8+10 = 2;

d=2;

an=a1+(n-1)d=  -12+(n-1)*2= -12+2n-2= -14+2n;

Sn=n*(a1+an)/2;

-36=n*(-12-14+2n)/2;

-36=n*(-26+2n)/2;

-36=n*(-13+n);

-36=-13n+n²;

n²-13n +36=0;

По теореме Виета

n1+n2=13;    n1*n2=36;

n1=9;   n2=4;

a9=-12+8*2=-12+16=4;

a4=-12+3*2=-12 +6= -6;

S9=9*(-12+4)/2=9*(-8)/2=-72/2=-36;

S4=4*(-12+(-6))/2 = 4*(-18)/2 = -72/2=-36.

ответ:  9  или 4.

3. Найдите сумму первых двадцати девяти членов арифме-

тической прогрессии -3,5; -3,7;

4. Сколько первых членов арифметической прогрессии –12;

-10; -8; ... нужно сложить, чтобы получить -36?

4,4(7 оценок)
Ответ:
vadimash
vadimash
22.04.2020
Решение
1)  2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2)  sin2x - √2/2 < 0
 sin2x < √2/2 
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
 - 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
 - 5π/8 + πk < x < π/8 + πk, k ∈ Z
3)  tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z
4,4(52 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ