1) 10a + b = 10b + a + 36 9a = 9b + 36 a = b + 4 Остаток от деления равен 36, значит, делитель больше 36. Возможные значения b: b = 3; 4; 5 Соответствующие им значения а: a = 7; 8; 9 ответ: 7 + 8 + 9 = 24.
2) Если дробь правильная, то 10a+b < 10b+a; значит a < b. Так как b = 1; 2; 3; 4; то a = 1; 2; 3 12/21; 13/31; 23/32; 14/41; 24/42; 34/43 ответ: Всего 6 дробей
3) Начинаем с 1. Сначала прибавляем 3, получаем 4, потом умножаем на 3, получаем 12. Дальше опять прибавляем 3 и умножаем на 3. Следующее число будет 48*3 = 144.
Решение задачи может быть произведено несколькими Первый классический. Выделим полный квадрат в этом выражении и посмотрим, к чему дело придёт. Надеюсь, с техникой выделения полного квадрата все знакомы, поэтому не комментирую этот шаг. x^2 - 6x + 10 = (x^2 - 2 * 3x + 9) - 9 + 10 = (x-3)^2 + 1 - раскройте скобки, проверьте, что я ничего не изменил. В силу того, что (x-3)^2 >= 0, имеем, что (x-3)^2 + 1 >= 1, то есть все значения этого выражения не меньше 1. Откуда и следует доказываемое равенство.
Либо же можно было просто заметить, что дискриминант трёхчлена x^2 - 6x + 10 отрицательный. Геометрически это означает, что на координатной плоскости парабола эта лежит целиком над осью OX. В силу того, что и ветви этой параболы направлены вверх, видим, что все значения этой параболы будут положительными, что и требовалось доказать. Это второй решения.
9a = 9b + 36
a = b + 4
Остаток от деления равен 36, значит, делитель больше 36.
Возможные значения b:
b = 3; 4; 5
Соответствующие им значения а:
a = 7; 8; 9
ответ: 7 + 8 + 9 = 24.
2) Если дробь правильная, то 10a+b < 10b+a; значит a < b.
Так как b = 1; 2; 3; 4; то a = 1; 2; 3
12/21; 13/31; 23/32; 14/41; 24/42; 34/43
ответ: Всего 6 дробей
3) Начинаем с 1. Сначала прибавляем 3, получаем 4, потом умножаем на 3, получаем 12. Дальше опять прибавляем 3 и умножаем на 3.
Следующее число будет 48*3 = 144.