Напишите уравнение окружности с центром в точке
А(0; 6), проходящей через точку В (-3; 2)
2. Даны точки А(-6;0), В(-2;0),Д(4;6
Найти координаты середины отрезка АД.
3. А(0;-4),В(3;0),С(1;6) ,Д(4;2) .
Найти длину отрезков АС и ВД.
4. Дано: А (2; 1), В (0; 3)
Напишите уравнение прямой АВ.
5. Найдите периметр треугольника ABC, если известны координаты его вершин A(- 3;5), B(3; - 3) и точки M(6;1), являющейся серединой стороны BC.
угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀)
1) найдем производную:
y'(x)=(x²+4)'=2x
k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1
2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е.
y'(x₀)=k
2*x₀=4
x₀=2
чтобы найти ординату точки, подставим x₀ в функцию y(x):
y₀=y(x₀)=2²+4=4+4=8
(2;4) - координаты точки, в которой угловой коэффициент касания равен k=4
3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀)
x₀=1, y'(x₀)=2 - найдено выше под 1)
y(x₀)=1²+4=5
подставляем найденные значения в общий вид:
f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1