a : b = 1 : 5 - отношение двух чисел
Пусть х - коэффициент пропорциональности, тогда а = 1х, b = 5х
1) a - b = 0,72 - разность этих чисел
1х - 5х = 0,72
- 4х = 0,72
х = 0,72 : (-4)
х = - 0,18 - число а
5х = 5 · (-0,18) = - 0,9 - число b
ответ: меньшее число равно (-0,9); большее число равно (-0,18).
Проверка: -0,18 - (-0,9) = -0,18 + 0,9 = 0,9 - 0,18 = 0,72 - разность.
2) b - a = 0,72 - разность этих чисел
5х - х = 0,72
4х = 0,72
х = 0,72 : 4
х = 0,18 - число а
5х = 5 · 0,18 = 0,9 - число b
ответ: меньшее число равно 0,18; большее число равно 0,9.
Проверка: 0,9 - 0,18 = 0,72 - разность.
Подробнее - на -
Объяснение:
Площадь фигуры может быть вычислена через определённый интеграл.
График функции y=3x² - 2 - квадратная парабола веточками вверх. Вершина параболы находится в точке А(0; -2). Парабола пересекает ось х в двух точках:
х₁ = -√2/3 ≈ -0,816
х₂ = √2/3 ≈ 0,816
Найдём пределы интегрирования
При х = 1 y=3x² - 2 = 1
Эта точка находится правее нуля функции в точке х₂ ≈ 0,816, т.е. в области положительных у, поэтому нижний предел х = 1, ну, а верхний предел, естественно, х = 2.
Интегрируем: ∫(3x² - 2)dx = x³ - 2x.
Подставляем пределы:
S = (2³ - 2·2) - (1³ - 2·1) = 4+1 = 5
ответ: Площадь фигуры равна 5