|x+3|+|3x-2|=4x+1 Приравняем каждое подмодульное выражение к нулю: x+3=0 => x=-3 3x-2=0 => x=2/3 Отметим эти точки на числовой прямой:
-32/3
Точки разбили числовую ось на 3 промежутка. Рассмотрим все три случая. 1)x<-3 Оба подмодульных выражения отрицательны на данном промежутке, поэтому модули раскроем со сменой знака: -x-3-3x+2= 4x+1 -4x-1=4x+1 -4x-4x=1+1 -8x=2 x=-1/4 - корень не принадлежит рассматриваемому промежутку 2)-3<=x<2/3 Первое подмодульное выржение положительно на этом промежутке, и его мы раскроем без смены знака. Второре - отрицательно, и раскроем его со сменой знака: x+3-3x+2=4x+1 -2x+5=4x+1 -2x-4x=1-5 -6x=-4 x=2/3 -число не принадлежит рассматриваемому промежутку 3)x>=2/3 Все подмодульные выражения положительны на этом промежутке: x+3+3x-2=4x+1 4x+1=4x+1 Это означает, что весь рассматриваемый промежуток будет решением уравнения. ответ: x e [2/3; + беск.)
1 C
2 A
3. 40√6
4 √14 , 3√2, 23
5. 2√11
6. пройдет
Объяснение:
2. Возведем в квадрат √ и границы интервалов и увидим
3. √96100 = √(6*16*100) = 40√6
4. возведем в квадрат: 14, 529, 18
5. 22/√11 = 2√11√11 / √11 = 2√11
6. так же возведем в квадрат H² = 32, h² = 29.16 h<H пройдет
7. = 3* (3-√b- 3 -√b) / (9-b) - 2b/ (9-b) = (6√b+2b)/b-9 = 2√b(3+√b)/(9-b)
непонятно зачем там про а сказано...
8. а) √а = 8√3
√а = √192
а = 192
b) √0 = 0, √36 = 6
у ∈ [0;6]
c) 14² = 196
28² = 784
x ∈ [196; 784]
d) y≤5
√x≤5
x ≥0
x≤ 25
x ∈ [0;25]