Для того чтобы решать такие уравнение ,нужно определить ,является ли данное уравнение однородным. Мы смотрим на степени ,как можем заметить идут квадраты ,но по середине идёт степень 1 ,мы конечно не можем сложить эти степени ,но мысленно мы складываем и получаем квадрат ,то есть мы доказали ,что данное уравнение однородное. Сейчас я запишу то без чего такое уравнение нельзя будет решать,то есть если такое уравнение попадётся на экзамене и вы не напишете ,то что я сейчас напишу ,то вам зачтут только и то если вы сделаете правильно букву "б". Однородное уравнение можно разделить на ,если ,то ,подставив ,мы получим неверное равенство. Если сейчас проверить и полностью убедиться ,что данное уравнение является однородным ,мы должны вместо подставить 0 ,а вместо 1 И получаем ,что не может быть ,следовательно уравнение однородное Запишем ОДЗ: k∈Z
Строим график и видим: максимум: 3, минимум при -2 или при 2, подстановкой видим минимум при -2, он равен -29. Альтернативное решение заключается в нахождении экстремумов функции при производных и рассматривании двух участков. Производную приравниваем к 0 для нахождения экстремумов кубической параболы: 3х^2-12х=0 х1=0 у1=0. А(0;0) х2=-4 у2=-157. В(-4;-157) На участке от -2 до 0: производная больше 0, функция возрастает. На участке от 0 до 2: производная меньше 0, функция убывает. Максимум при х=0 и у=3 Минимум либо при х=-2, либо при х=2. Подстановкой убеждаемся: минимум при х=-2, он равен -29. Этот позволяет построить график, который указан выше, но построение графика при этом аналитическом не необходимо.
Для того чтобы решать такие уравнение ,нужно определить ,является ли данное уравнение однородным. Мы смотрим на степени ,как можем заметить идут квадраты ,но по середине идёт степень 1 ,мы конечно не можем сложить эти степени ,но мысленно мы складываем и получаем квадрат ,то есть мы доказали ,что данное уравнение однородное.
Сейчас я запишу то без чего такое уравнение нельзя будет решать,то есть если такое уравнение попадётся на экзамене и вы не напишете ,то что я сейчас напишу ,то вам зачтут только и то если вы сделаете правильно букву "б".
Однородное уравнение можно разделить на ,если ,то ,подставив ,мы получим неверное равенство.
Если сейчас проверить и полностью убедиться ,что данное уравнение является однородным ,мы должны вместо подставить 0 ,а вместо 1
И получаем ,что не может быть ,следовательно уравнение однородное
Запишем ОДЗ:
k∈Z