М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Leonidch
Leonidch
29.06.2020 17:05 •  Алгебра

У класі 12 хлопців і 18 дівчат. яка ймовірність того що навманя обраний з класу учень 1)хлопець. 2)дівчина?

👇
Ответ:
pgvladp0dtcc
pgvladp0dtcc
29.06.2020

1)0,4

2)0,6

Объяснение:

всего учеников 30

1)A-событие, при котором выберут 1 мальчика

P(A)=12/30=2/5=0,4

2)B-событие, при котором выберут 1 девочку

P(B)=18/30=3/5=0,6

Так же можно вычислить как 1-0,4(весь класс минус вероятность выбора мальчика)=0,6

4,6(71 оценок)
Открыть все ответы
Ответ:
lena101992
lena101992
29.06.2020

<!--c-->

Преобразим заданное уравнение:

x3+12x2−27x=a

С производной построим график функции y=x3+12x2−27x.

1. Введём обозначение f(x)=x3+12x2−27x.

Найдём область определения функции D(f)=(−∞;+∞).

2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:

f′(x)=(x3+12x2−27x)′=3x2+24x−27.

Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.

Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:

3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1

Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.

Если производная функции в критической (стационарной) точке:

1) меняет знак с отрицательного на положительный, то это точка минимума;

2) меняет знак с положительного на отрицательный, то это точка максимума;

3) не меняет знак, то в этой точке нет экстремума.

Итак, определим точки экстремума:

При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при  −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При  −9<x<1 имеем отрицательную производную, при

Объяснение:

4,4(66 оценок)
Ответ:
aarodin
aarodin
29.06.2020
А) log по основанию 4 (sinx+2sinxcosx+16)=log 16 по основанию 4
логарифмы отбрасываем и приравниваем подлогарифмические выражения
sinx+2sinxcosx+16=16
sinx+2sinxcosx=16-16
sinx(1+2cosx)=0
sinx=0                  или                             1+2cosx=0
x=n, n∈z                              2cosx=-1
                                                               cosx=-1/2
                                                   x=(-/3)+2n
                                                   x=2/3+2n, n∈z
б)(720;-450)

x=2n, n∈z
4,7(44 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ