Для решения нужно знать некоторые теоремы: 1) любая высота в равностороннем треугольнике является биссектрисой и медианой этого треугольника, а также серединным перпендикуляром к соответствующей стороне этого треугольника. 2) теорема Пифагора. 3) медианы любого треугольника точкой пересечения делятся в отношении 2:1 считая от вершины. Пусть сторона данного треугольника a=(V3). Проведем какую-либо высоту в данном треугольнике, эта высота является медианой, поэтому делит сторону, к которой проведена пополам. Рассмотрим один из двух прямоугольных треугольников, на которые делится исходных равносторонний треугольник проведенной высотой. Гипотенуза прямоугольного треугольника = a, один из катетов = (a/2). Найдем второй катет, который является высотой исходного треугольника. По т. Пифагора: a^2 = (a/2)^2 + h^2; h^2 = a^2 - (a/2)^2 = a^2 - (a^2/4) = (3/4)*(a^2). h = a*(V3)/2, Центр описанной окружности - это точка пересечения серединных перпендикуляров к сторонам данного треугольника. Но в равностороннем треугольнике все серединные перпендикуляры являются медианами (а также биссектрисами и высотами) этого треугольника. Поэтому длина h это длина медианы, а искомый радиус (в соответствии с теоремой 3) ) будет равен (2/3) от h. Т.е. R = (2/3)*h = (2/3)*a*(V3)/2 = (2/3)*(V3)*(V3)/2 = 1.
1 y=x² 1)x=2 y=4 2)x=-3/4 y=9/16 2 1)x²=9 x1=-3 U x2=3 (-3;9);(3;9) 2)x²=-x x²+x=0 x(x+1)=0 x1=0⇒y1=0 x2=-1⇒y2=1 (0;0);(-1;1) 3 y=x²,вершина в точке (0;0)-точка минимума у=0-наименьшее у(-4)=16 наибольшее (3)=9 х -4 -3 -2 -1 0 1 2 3 у 16 9 4 1 0 1 4 9 по этим точкам строишь график 4 1)х²=х Строишь параболу у=х² по таблице которая в №3 Строишь прямую у=х по точкам (0;0) и (1;1) ответ (0;0);(1;1) 2)Строишь параболу у=х² по таблице которая в №3 Строишь прямую у=2х-1 по точкам (0;-1) и (1;1) ответ (1;1) 5 y1=x² и у2=6х-5 Строишь параболу у=х² по таблице которая в №3 Строишь прямую у=6х-5 по точкам (0;-5) и (1;1) ответ (5;0)4(1;1)
4) (12х^5/25) × (15/8х^2) = (3х^3/5) × (3/2) = 9х^3/10 (сокращаем 12х^5 и 8х^2, сокращаем 25 и 15)
6) иксы сокращаем и умножаем = 3/4
8) (16х^5/35) × (5/8х^3) = 2х^2/7 (сокращаем 16х^5 и 8х^3, сокращаем 35 и 5)
10) (9/2а) × (5а/3) = 3/2 × 5 = 15/2 = 7,5 (сокращаем 9 и 3, сокращаем 5а и 2а)
12) (3/4а^3) × (16а^2/9) = (1/а) × (4/3) = 4/3а (сокращаем 3 и 9, сокращаем 16а^2 и 4а^2)
14) (15/3аб) × (12б^3/3) = (5/а) × 4б^2 = 20б^2/а (сокращаем 15 и 3, сокращаем 12б^3 и 3б)
15) (18/с^4) × (с^3/24) = (3/с) × (1/4) = 3/4с (сокращаем 18 и 24, сокращаем с^3 и с^3)