При x ≤0 система не имеет решения , т.к. не удовл. второе уравнение получается (-x+x)(y -a) =0 ≠2. ОСТАЕТСЯ РАССМАТРИВАТЬ ТОЛЬКО СЛУЧАЙ X>0. {x>0 ; x+4y =2a -2 ; x(y -a ) =1. {x>0 ; y =(2a -2 -x)/4 ; x((2a -2 -x)/4 -a ) =1. x((2a -2 -x)/4 -a ) =1; x² +2(a+1)x +4 =0 ; имеет решение, если D/4 =(a+1)² -4 =a ² +2a -3 =(a+3)(a -1) ≥0 ⇒a ∈( -∞ ;-3] U[ 1 ;∞) обе корни одного знака x₁*x₂ =4>0. * * *x₁ = -(a+1) -√(a ² +2a -3 ) ; x₂ = -(a+1) +√(a ² +2a -3 ) * * * еще одно ограничение на параметр a (x>0): a+1 < 0 ⇒ a < -1
По формуле классической вероятности: p=m/n n=90 ( количество двузначных чисел)
Числа делящиеся на 3: 12; 15;... 99 - таких чисел 30 Можно найти их количество по формуле n-го члена арифметической прогрессии a₁=12 d=15-12=3 99=12+3·(n-1) ⇒87=3(n-1) n-1=29 n=30
Числа делящиеся на 5: 10; 15;20; 25; 30;...; 95 - таких чисел 30 Можно найти их количество по формуле n-го члена арифметической прогрессии a₁=10 d=15-10=5 95=10+5·(n-1) ⇒85=5(n-1) n-1=19 n=20
Чисел, которые одновременно делятся и на 3 и на 5 всего 6: 15;30;45;60;75 и 90
получается (-x+x)(y -a) =0 ≠2.
ОСТАЕТСЯ РАССМАТРИВАТЬ ТОЛЬКО СЛУЧАЙ X>0.
{x>0 ; x+4y =2a -2 ; x(y -a ) =1.
{x>0 ; y =(2a -2 -x)/4 ; x((2a -2 -x)/4 -a ) =1.
x((2a -2 -x)/4 -a ) =1;
x² +2(a+1)x +4 =0 ;
имеет решение, если
D/4 =(a+1)² -4 =a ² +2a -3 =(a+3)(a -1) ≥0 ⇒a ∈( -∞ ;-3] U[ 1 ;∞)
обе корни одного знака x₁*x₂ =4>0.
* * *x₁ = -(a+1) -√(a ² +2a -3 ) ; x₂ = -(a+1) +√(a ² +2a -3 ) * * *
еще одно ограничение на параметр a (x>0):
a+1 < 0 ⇒ a < -1
ответ: a ∈( -∞ ; -3 ]