Стоимость доставки М = х + п*у, где х - стоимость доставки к дому, у - стоимость доставки на 1 этаж, п - количество этажей Тогда: М₄ = 890 = х + 4у М₇ = 980 = х + 7у решаем систему
х = 980 - 7у - подставляем в 1-е уравнение: 980 - 7у + 4 у = 890 90 = 3у у = 30 тогда х = 980 - у = 980 - 210 = 770
Здесь - след матрицы, то есть сумма диагональных элементов, - знак транспонирования. Соответственно квадрат длины вектора (то есть матрицы A) равен
Ортонормированным базисом будет, например, базис, состоящий из матриц, у которых на одном месте стоит 1, а на остальных местах стоят нули. Только нужно помнить, что базис - это УПОРЯДОЧЕННЫЙ набор векторов (естественно, линейно независимых, через которые можно линейно выразить любой вектор этого пространства), поэтому Вы должны указать, в каком порядке эти матрицы будете располагать. Скажем, сначала матрица , у которой в пересечении первой строчки и первого столбца стоит единица, а остальные нули, потом матрицы далее переходим на вторую строчку и так далее до последней матрицы .
В случае скалярное произведение задается по той же формуле, только у второй матрицы элементы нужно заменить на комплексно сопряженные:
.
А ортонормированный базис будут образовывать те же матрицы
Стоимость доставки М = х + п*у, где х - стоимость доставки к дому,
у - стоимость доставки на 1 этаж,
п - количество этажей
Тогда: М₄ = 890 = х + 4у
М₇ = 980 = х + 7у решаем систему
х = 980 - 7у - подставляем в 1-е уравнение:
980 - 7у + 4 у = 890
90 = 3у
у = 30 тогда х = 980 - у = 980 - 210 = 770
и М₁₁ = 770 + 11*30 = 1100 (руб)