1)x²-x+√5=0
D=1 - 4√5
На первый взгляд, все хорошо, но давайте разберёмся с одной вещью:
1-4√5, посмотрите, ведь 4√5 > 1 => D - отрицательное число. А мы знаем, что, если D<0, то корней нет
ответ: корней нет
2)log7 x≥2 Одз: x>0
log7 x≥2log7 7
log7 x≥log7 7²
log7 x≥log7 49
x≥49
Не забываем сравнить с одз:
- +
◎> х
0
- +
●> х
49
=> x ∈ [49;+∞)
ответ: x ∈ [49;+∞)
3)1/(х²+2x-1) <0 одз: х²+2x-1≠0
х1≠ -1+√2
х2≠ -1-√2
Решим данное неравенство методом интервалов, для этого найдём корни уравнения:
х²+2x-1=0
D=4-4*(-1)=8
x1= (-2+2√2)/2 = 2(-1+√2)/2 = -1+√2
х2= (-2-2√2)/2 = 2(-1-√2)/2 = -1-√2
+ - +
◎◎--> х
-1-√2 -1+√2
=> x∈(-1-√2;-1+√2)
ответ: x∈(-1-√2;-1+√2)
∠ACB = ∠ADB = x
∠BAC = ∠BDC = y
∠CAD = ∠CBD = z
x:y:z = 5:7:13
∠ABC = ∠ABD + ∠CAD = 50° + z
∠BCD = ∠ACB + ∠ABD = x + 50°
∠CDA = ∠BDC + ∠ADB = y + x
∠DAB = ∠CAD + ∠BAC = z + y
∠ABC + ∠BCD + ∠CDA + ∠BAD = 50 + z + x + 50 + y + x + z + y = 360°
100 + 2z + 2x + 2y = 360
x + z + y = 130
x/y = 5/7
x/z = 5/13
x + 7x/5 + 13x/5 = 130
5x = 130
x = 26
y = 36.4
z = 67.6
∠ABC = 50° + z = 50° + 67.6° = 117.6°
∠BCD = x + 50° = 26° + 50° = 76°
∠CDA = y + x = 36.4° + 26° = 62.4°
∠DAB = z + y = 67.6° + 36.4° = 104°