Данное дифференциальное уравнение является обыкновенным дифференциальным уравнением первого порядка (ОДУ I) Здесь y' = dy/dx. Значит, (x^2+1)dy=(y^2+1)x dx | : (x^2+1) : (y^2+1) (комментарий: разделим оба части уравнения на x^2+1 и y^2+1) dy/(y^2+1) = x dx / (x^2+1) Проинтегрировав обе части уравнения, 1) dy/(y^2+1) = arctg y +C1(по таблице интегралов) 2) x dx / (x^2+1) = d(x^2+1) / (x^2+1) = 1/2 ln(x^2+1) +C2 получим arctg y + C1 = 1/2 ln(x^2 + 1) + C2 (Пусть C = C2-C1) arctg y = 1/2 ln(x^2 +1) + C - общий интеграл данного ОДУ (т.е. само решение)
По формуле общего члена геометрической прогрессии: Найти b₅₀/b₁₀=b₁·q⁴⁹/b₁·q⁹=q⁴⁰.
По условию: S₃₀ меньше (S₉₀-S₃₀) в 72 раза. Значит 72S₃₀=S₉₀-S₃₀ или 73S₃₀=S₉₀.
По формуле суммы n- первых членов геометрической прогрессии:
73b₁(q³⁰-1)=b₁(q⁹⁰-1); 73q³⁰-q⁹⁰=72
q³⁰=t q⁹⁰=(q³⁰)³=t³ Кубическое уравнение t³-73t+72=0 Легко заметить, что t=1 является корнем уравнения 1-73+72=0- верно. Это разложить левую часть на множители. t³-1-73t+73=0 (t-1)(t²+t+1)-73(t-1)=0 (t-1)(t²+t-72)=0 t₁=1 или t²+t-72=0 D=1+288=289 t₂=(-1-17)/2=-9 или t₂=(-1+17)/2=8 q³⁰=-9 - уравнение не имеет корней. q³⁰=8; (q¹⁰)³=2³. Значит q¹⁰=2 q⁴⁰=2⁴=16 О т в е т.b₅₀/b₁₀=q⁴⁰=16.
Це Объяснение: