Для острых углов известно соотношение sinα<α<tgα . α=1/(n+6) стремится к 0 при n->∞.
tg1/(n+6)>1/(n+6).
Исходный ряд сравним с рядом ,общий член которого 1/(n+6).Этот ряд расходящийся, так как его можно сравнить с расходящимся обобщённо-гармоническим рядом ∑1/n : lim (1/n)/(1/n+6)=1≠0 при n->∞ ⇒ оба ряда ∑1/n и ∑1/(n+6) расходятся.
Ряд ∑1/(n+6) является минорантным, а ряд ∑tg1/(n+6) мажорантным. Из расходимости минорантного ряда следует расходимость мажорантного. ⇒∑tg1/(n+6) - расходящийся ряд.
Дано уравнение cosx=1/(1- tgx).
сosx*(1 - tgx) = 1.
сosx - сosx*tgx = 1.
Заменим tgx = sinx/cosx,
сosx - сosx*( sinx/cosx) = 1.
cosx – sinx = 1.
Заменим sinx = √(1 – cos²x)
cosx - √(1 – cos²x) = 1.
Перенесём корень вправо, а 1 влево и возведём обе части в квадрат.
cos²x – 2cosx + 1 = 1 – cos²x,
2 cos²x – 2cosx = 0,
2cosx(cosx - 1) = 0.
Имеем 2 решения: cosx = 0 и cosx = 1.
Находим значения х:
x = arc cos 0 отбрасываем, так как при этом функция тангенса не имеет определения.
x = arc cos(1) = 2πn, n ∈ Z.
ответ: в заданном промежутке имеется 3 корня уравнения
-2π, 0, 2π.
.