М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Полина112006
Полина112006
07.10.2020 13:47 •  Алгебра

В коробке 8 белых и несколько черных шаров. Сколько может быть черных шаров в коробке, если вероятность того, что наугад выбранный шар окажется черным, больше 0,2, но меньше 0,3.

👇
Ответ:
sabina1705
sabina1705
07.10.2020
3 шара
ответ: в коробке может быть 3 шара
4,5(2 оценок)
Открыть все ответы
Ответ:
ТаяDuda2133
ТаяDuda2133
07.10.2020
\frac{log_{21+4x-x^2}(7-x)}{log_{x+3}(21+4x-x^2)} \ \textless \ \frac{1}{4}
ОДЗ: 21 + 4x - x² > 0
          21 + 4x - x² ≠ 1
          7 - x > 0
          x + 3 > 0
          x + 3 ≠ 1

21 + 4x - x² > 0
x² - 4x - 21 < 0

x² - 4x - 21 = 0
По теореме Виета: x₁ = -3, x₂ = 7.

x² - 4x - 21 < 0
x ∈ (-3; 7)

21 + 4x - x² ≠ 1
x² - 4x - 20 ≠ 0
D = 16 + 80 = 96
x_1 \neq \frac{4- \sqrt{96}}{2} = 2 -\sqrt{24} = 2(1-\sqrt{6}) \\ x_2 \neq \frac{4+\sqrt{96}}{2} = 2+\sqrt{24}=2(1+\sqrt{6})

7 - x > 0
x < 7

x + 3 > 0
x > -3

x + 3 ≠ 1
x ≠ -2

Окончательно, ОДЗ: x ∈ (-3; 2(1-\sqrt{6})) U (2(1-\sqrt{6}); -2) U (-2; 2(1+\sqrt{6})) U (2(1+\sqrt{6}); 7).

Решаем само неравенство:
\frac{log_{-(x+3)(x-7)}(7-x)}{log_{x+3}(-(x+3)(x-7))} \ \textless \ \frac{1}{4} \\ \frac{log_{(x+3)(7-x)}(7-x)}{log_{x+3}((x+3)(7-x))} \ \textless \ \frac{1}{4}
\frac{1}{log_{7-x}((x+3)(7-x))*log_{x+3}((x+3)(7-x))} \ \textless \ \frac{1}{4} \\ \frac{1}{(log_{7-x}(x+3)+1)*(1+ log_{x+3}(7-x))} \ \textless \ \frac{1}{4}
\frac{1}{( \frac{1}{ log_{x+3}(7-x)}+1)*(1+ log_{x+3}(7-x))} \ \textless \ \frac{1}{4} \\ \frac{log_{x+3}(7-x)}{(1+ log_{x+3}(7-x))^2} \ \textless \ \frac{1}{4}
Замена:
t=log_{x+3}(7-x) \\ \frac{t}{(1+t)^2} \ \textless \ \frac{1}{4} \\ \frac{4t-(1+t)^2}{4(1+t)^2} \ \textless \ 0
\frac{4t-1-2t-t^2}{4(1+t)^2} \ \textless \ 0 \\ \frac{-(1-t)^2}{4(1+t)^2} \ \textless \ 0
\frac{(1-t)^2}{4(1+t)^2}\ \textgreater \ 0
t ≠ 1
t ≠ -1
Делаем обратную замену:
log_{x+3}(7-x) \neq 1 \\ log_{x+3}(7-x) \neq -1

7-x \neq x+3\\ 7-x \neq \frac{1}{x+3}

2x \neq 4\\ \frac{(7-x)(x+3)-1}{x+3} \neq 0

x \neq 2\\ \frac{20+4x-x^2}{x+3} \neq 0

x \neq 2\\ x^2-4x-20 \neq 0 \\ x+3 \neq 0

x \neq 2\\ x^2-4x-20 \neq 0 \\ x\neq -3

Учитывая ОДЗ, окончательный ответ: x ∈ (-3; 2(1-\sqrt{6})) U (2(1-\sqrt{6}); -2) U (-2; 2) U (2; 2(1+\sqrt{6})) U (2(1+\sqrt{6}); 7).

 
4,4(6 оценок)
Ответ:
14062006123
14062006123
07.10.2020

   

План-конспект урока

Алгебра

8 класс

Тема: Доказательство неравенств

Цель:

Образовательная: формирование умений доказательства неравенств, формирование

Этапы занятия:

Организационный момент.

Актуализация опорных занятий.

Усвоение новых знаний и действий.

Первичное закрепление знаний и действий.

Контроль и самопроверка знаний, рефлексия.

Подведение итогов занятий.

ХОД ЗАНЯТИЯ

1. Организационный момент. Подготовка учащихся к работе на занятии.

2. Подготовка к основному этапу. Обеспечение мотивации, значимости изучаемой темы занятия и принятия учащимися учебно-познавательной деятельности, актуализация опорных знаний.

а) С неравенств сравниваются большие и малые величины;

b) Во С какого приема мы умеем доказывать неравенство вида aответ:

- Один из приемов доказательства неравенства ab) сводят к доказательству равносильного ему неравенства a-b<0 (a-b>0);

c) Повторим данное доказательство на примере неравенства Коши.

“Среднее арифметическое неотрицательных чисел не меньше их среднего геометрического”:

Доказать: 

Доказательство: Рассмотрим разность левой и правой частей неравенства:

Неотрицательность квадрата любого вещественного числа очевидна.

Значит,   – верное неравенство.

3.

a) Во Попробуем сформулировать другой прием.

ответ (учитель ответить на во Другой прием состоит в том, чтобы показать, что данное неравенство является следствием некоторого очевидного неравенства:

(a-b)2  0, (a+b)2  0 или неравенства Коши   , при а0, b0, выражающее соотношение между средним арифметическим и средним геометрическим двух неотрицательных чисел;

b) Докажем, что (a+b)(ab+1)  4ab, при а0, b0.

Доказательство: Рассмотрим a+b и ab+1.

Используем очевидное неравенство Коши:

второго множителя.

Перемножим получившиеся неравенства:

с) Так же используют следующий прием: предполагают, что данное неравенство верно при заданных значениях переменных, строят цепочку неравенств-следствий, приводящую к некоторому очевидному неравенству. Рассматривая затем эту цепочку неравенств снизу вверх, показывают, что данное неравенство является следствием полученного очевидного неравенства и потому верно при указанных значениях переменных.

Значит, доказательство (a+b)·(ab+1)  4ab, при а0, b0 можно выполнить другим Допустим, что при а0, b0 данное неравенство верно, т.е.:

Используя неравенство Коши дважды для каждого множителя, имеем:

Значит, (a+b)·(ab+1)  4ab, при а0, b0, что и требовалось доказать.

4. Докажем: 

Доказательство: Допустим, что данное неравенство верно.

Получили очевидное неравенство.

Значит, данное неравенство  верно.

Во Мы можем привести доказательство данного неравенства из очевидного неравенства (a+b-2)2  0?

ответ: Да, для этого сделаем обратные шаги (рассказать по готовой записи)

Объяснение:

как то так, неуверен

4,4(58 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ