Пусть х км в час - собственная скорость катера, у км в час - скорость течения реки. Тогда (х+у) км в час - скорость катера по течению, (х-у) км в час - скорость катера против течения.
3·(х+у) км путь катера по течению за 3 часа. 5·(х-у) км путь катера против течения за 5 часов. Всего по условию задачи 92 км. Первое уравнение: 3·(х+у) + 5·(х-у) = 92;
5·(х+у) км путь катера по течению за 5 часов. 6·(х-у) км путь катера против течения за 6 часов. По условию задачи 5·(х+у) больше 6·(х-у) на 10. Второе уравнение: 5·(х+у) - 6·(х-у) = 10.
Получена система двух уравнений с двумя переменными. {3·(х+у) + 5·(х-у) = 92 ⇒{3x+3y+5x-5y=92 ⇒ { 8x-2y=92 ⇒ {4x-y=46 {5·(х+у) - 6·(х-у) = 10 ⇒{5x+5y-6x+6y=10 ⇒ {-x+11y=10 ⇒ {x=11y-10
{4·(11y-10)-y=46 {x=11y-10
{44y-40-y=46 {x=11y-10
{43y=86 {x=11y-10
{y=2 {x=11·2-10=12
О т в е т. 12 км в час - собственная скорость катера, 2 км в час - скорость течения реки.
найдем координаты векторов АВ и АС, выходящих из вершины А, от координат конца вычтем координаты начала.
→АВ(4-3; 6-5); →АВ(1; 1); →АС(5-3; 5-5); →АВ(2; 0);
найдем длины этих векторов. длина →АВ равна √(1²+1²)=√2; длина →АС равна √(2²+0²)=2;
Найдем скалярное произведение этих же векторов. это сумма произведений соответствующих координат.
→АВ*→АВ=1*2+1*0=2
Разделим скалярное произведение векторов на произведение их модулей, найдя косинус угла между векторами.
2/(2√2)=√2/2, значит. внутренний угол при вершине А равен 45°
ответ 45°