Б) f(x)=4-2x f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (-2) f`(0,5)=f`(-3)=-2
в) f(x)=3x-2 f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (3) f`(5)=f`(-2)=3
Чтобы определить количество корней в квадратном уравнении, достаточно вычислить его дискриминант по формуле: (если дискриминант больше нуля уравнение имеет 2 корня, если равен нулю, уравнение имеет 1 корень, если меньше нуля, то нет корней), либо применяя разложение многочлена
Дискриминант больше нуля - два корня
Дискриминант равен нулю. В уравнении 1 корень
Дискриминант меньше нуля, значит нет действительных корней
2)
Найти область определения функции - это найти "проблемные точки" в функции, при которых функция перестанет существовать. В нашем случае, это нельзя допускать, когда знаменатель обратится в ноль. Для этого мы должны его приравнять к нулю и выяснить, при каких значениях функция перестанет существовать.
В нашем случае функция не имеет смысла, при х=-1 и х=0
1) (x² - 4)(x + 5) ≤ 0; ответ: (-∞;-5] ∪ [-2;2];
2) (x - 9)(x + 12) ≥ 0; ответ: (-∞;-12] ∪ [9;+∞);
3) (81 - x²)(x+10)² ≤ 0; ответ: (-∞;-9] ∪ [9;+∞);
Объяснение:
1) Выражение (x² - 4)(x + 5) ≤ 0 отрицательно или равно нулю при:
x ≤ -5 и -2 ≤ x ≤ 2
2) Выражение (x - 9)(x + 12) ≥ 0 отрицательно или равно нулю при:
x ≤ 9 и x ≤ -12; В интервале от (-∞;-12) два отрицательных выражения при умножении становятся положительными.
В интервале от (-12;9) выражение (x - 9) принимает положительное значение, значение функции изменяется на отрицательное.
3) Выражение (81 - x²)(x+10)² ≤ 0 отрицательно или равно нулю при:
-9 ≤ x ≤ 9; x = -10; (x+10) всегда положительно.