y=(x+2)^2-4 - квадратичная функция, график - парабола, ветви направлены вверх, график можно получить путём параллельного переноса графика функции y=x^2 на 2 единичных отрезка влево и на 4 единичных отрезка вниз
1) D(y)=R
2) Нули: x=0 при y=0; y=0 при x=0 и x=-4
3) y<=0 при x принадлежащем [-4;0], y>0 при x принадлежащем (-бесконечность;-4) и (0;+ бесконечность)
4) Функция убывает на промежутке x принадлежащем (-бесконечность;-2) и возрастает на промежутке x принадлежащем (-2;+ бесконечность)
Анализируем отмеченные числа. Числа а и b отрицательные, т.е. a<0 и b<0. Причём a<b. Число с положительное, т.е. с>0.
1) a+b>0 - неверно Т.к. числа a и b отрицательные, то их сумма число тоже отрицательное.
2) 1/a>1/b - верно Если для модулей чисел справедливо неравенство |a| > |b|, то у их обратных чисел всё наоборот: 1/|a| < 1/|b|. Но т.к. числа отрицательные, то 1/a > 1/b
3) ac>0 - неверно Перемножаются числа с разными знаками, следовательно, результат отрицательный.
4) 1/b>1/c - неверно Слева число отрицательно, а справа - положительно.
y=(x+2)^2-4 - квадратичная функция, график - парабола, ветви направлены вверх, график можно получить путём параллельного переноса графика функции y=x^2 на 2 единичных отрезка влево и на 4 единичных отрезка вниз
1) D(y)=R
2) Нули: x=0 при y=0; y=0 при x=0 и x=-4
3) y<=0 при x принадлежащем [-4;0], y>0 при x принадлежащем (-бесконечность;-4) и (0;+ бесконечность)
4) Функция убывает на промежутке x принадлежащем (-бесконечность;-2) и возрастает на промежутке x принадлежащем (-2;+ бесконечность)
5) E(y)=[-4;+бесконечность).
Подробнее - на -
Объяснение: