ответ:
) а) f(x) = 1/5x5 - x3 + 4.
f'(х) = 1/5 * 5 * х4 – 3х² = х4 – 3х².
б) f(x) = (3x – 1)/x3.
производная произведения: (f * g)' = f' * g + f * g'.
f'(х) = (3x – 1)' * x3 + (3x – 1) * (x3)' = 3 * x3 + (3x – 1) * 3x² = 3x3 + 9x3 – 3x² = 12x3 – 3x².
в) f(x) = 1/(2cosx).
производная дроби: (f/g)' = (f' * g - f * g')/g^2.
f'(х) = (1' * 2cosx - 1* (2cosx)')/( 2cosx)^2 = (0 - 1* (-2sinx))/2cos²x = sinx/cos²x.
2) а) f(x) = xsinx.
f'(х) = х' * sinx + х * (sinx)' = sinx + хcosx.
x = п/2; f'(п/2) = sinп/2 + п/2cosп/2 = 1 + п/2 * 0 = 1.
б) f(x) = (2x - 3)6.
f'(х) = 6(2х – 3)5 * (2х – 3)' = 6(2х – 3)5 * 2 = 12(2х – 3)5.
х = 1; f'(1) = 12(2 * 1 – 3)5 = 12 * (-1)5 = -12.
3) а) f(x) = 2sinx – x.
f'(х) = 2cosx – 1.
f'(х) = 0; 2cosx – 1 = 0.
2cosx = 1.
cosx = ½.
х =±п/3 + 2пn, n – целое число.
b) f(x) = x5 + 20x².
f'(х) = 5х4 + 20х.
f'(х) = 0; 5х4 + 20х = 0.
х(5х3 + 2) = 0.
отсюда х = 0.
или 5х3 + 2 = 0; 5х3 = -2; х3 = -2/5; х = 3√(-2/5).
объяснение:
a) 27.
б) -3/11.
Объяснение:
Решение.
a) lim (x-->3)(x³-27)/(x-3);
Если подставим значения х=3, то в числителе и знаменателе получим ноль. Это неопределенность 0/0. Чтобы избежать этой неопределенности числитель разложим на множители:
lim(x-->3)(x-3)(x²+3x+3²) /(x-3);
После сокращения получим:
lim(x-->3)( x² + 3x + 9)=lim(x-->3)(3²+3*3+9)=27.
***
б) lim (x-->∞) (-3x²+5x-9)/(11x²+18x-2);
При подстановки значения х = ∞
получаем неопределенность типа ∞/∞. Чтобы избежать этой неопределенности числитель и знаменатель разделим на х в старшей степени:
lim(x-->∞)(-3x²/x² + 5x/x²-9/x²)/(11x²/x²+18x/x² - 2/x²) =
= lim(x-->∞)(-3 +0 -0) / (11 +0 +0) = -3/11.
1) (x² + x + 1)(x² + x + 2) = 12
Сделаем замену :
x² + x + 1 = m , тогда x² + x + 2 = m + 1
m(m + 1) = 12
m² + m - 12 = 0
D = 1² - 4 * (- 12) = 1 + 48 = 49 = 7²
1) x² + x + 1 = - 4
x² + x + 5 = 0
D = 1² - 4 * 5 = 1 - 20 = - 19 < 0 - решений нет
2) x² + x + 1 = 3
x² + x - 2 = 0
По теореме Виета :
x₁ = - 2 x₂ = 1
ответ : - 2 ; 1
2)
3(x² + 5x + 1)² + 2x² + 10x = 3
3(x² + 5x + 1)² + 2(x² + 5x) = 3
Сделаем замену :
x² + 5x + 1 = m , тогда x² + 5x = m - 1
3m² + 2(m - 1) = 3
3m² + 2m - 2 - 3 = 0
3m² + 2m - 5 = 0
D = 2² - 4 * 3 * (- 5) = 4 + 60 = 64 = 8²
1)x²+ 5x + 1 = - 5/3
x² + 5x + 8/3 = 0
3x² + 15x + 8 = 0
D = 15² - 4 * 3 * 8 = 225 - 96 = 129
2)x²+ 5x + 1 = 1
x² + 5x = 0
x(x + 5) = 0
x₃ = 0 x₄ = - 5
3)
(x⁴ - 5x²)² - 2(x⁴ - 5x²) = 24
Сделаем замену :
x⁴ - 5x² = m
m² - 2m - 24 = 0
По теореме Виета :
m₁ = 6 m₂ = - 4
1) x⁴ - 5x² = 6
x⁴ - 5x² - 6 = 0
x² = 6
x₁ = - √6 x₂ = √6
x² = - 1 - решений нет
2) x⁴ - 5x² = - 4
x⁴ - 5x² + 4 = 0
x² = 4
x₃ = - 2 x₄ = 2
x² = 1
x₅ = - 1 x₆ = 1
ответ : - √6 ; √6 ; - 1 ; 1 ; - 2 ; 2