y=x^2-3x+2
1) Находим точки пересечения графика функции с осью Ох:
х^2-3x+2=0
x1=1, x2=2
(1;0) и (2;0) - искомые точки
2) Находим уравнение касательной к графику функции в точке х=1
y`(x)=(x^2-3x+2)`=2x-3
y`(1)=2*1-3=-1 k1=-1
y(1)=1^2-3*1+2=1-3+2=0
y=0+(-1)(x-1)=-x+1 -уравнение касательной в точке х=1
3) Находим уравнение касательной к графику функции в точке х=2
y`(2)=2*2-3=4-3=1 k2=1
y(2)=2^2-3*2+2=4-6+2=0
y=0+1(x-2)=x-2 -уравнение касательной в точке х=2
4) Коэффициент угла наклона первой касательной k1=-1, а второй касательной k2=1,
следовательно, касательные взаимно перпендикулярны,
т.е.угол между ними равен 90 градусов.
Объяснение:
5/4 и 3/2 = (3 * 2) /(2 * 2) = 6/4; б) 2/3 = (2 * 5)/(3 * 5) = 10/15 и 2/15 в) 7/15 = (7 * 3)/(15 * 3) = 21/45 и 5/9 = (5 * 5)/(9 * 5) = 25/45; г) 1/6 = (1 * 5)/(6 * 5) = 6/30 и 3/10 = (3 * 3)/(10 * 3) = 9/30; д) 1/3 = (1 * 6)/(3 * 6) = 6/18 и 5/18 е) 5/8 = (5 * 3)/(8 * 3) = 15/24 и 2/3 = (2 * 8)/(3 * 8) = 16/24; ж) 1/2 = (1 * 15)/(2 * 15) = 15/30 и 2/15 = (2 * 2)/(15 * 2) = 4/30; з) 5/12 = (5 * 5)/(12 * 5) = 25/60 и 7/15 = (7 * 2)/(15 * 2) = 14/30; и) 3/10 = (3 * 10)/(10 * 10) = 30/100 и 33/100.
решение прикреплено см фото