Решение Пусть скорость первого лыжника будет х (км/ч). Тогда скорость второго лыжника (х+2) (км/ч). Время первого лыжника 20/х (км/ч), а второго 20/(х+2) (км/ч); а так как второй расстояние на 20мин, т.е. на 1/3 часа быстрее, то имеем уравнение такого вида: 20/x – 20/(x + 2) = 1/3 20/x – 20/(x + 2) - 1/3 = 0 умножим на 3 60/x – 60/(x + 2) – 1 = 0 60(х+2) - 60х – x*(x + 2) = 0 х² + 2x – 120 = 0 D=b² - 4ac = 4 + 4*1*120 = 484 x= (- 2 + 22)/2 = 10 10 (км/ч) - скорость первого лыжника 10 + 2 = 12 (км/ч) — скорость второго лыжника ответ: 10 км/ч; 12 км/ч
Решить графически уравнение вида f(x)=g(x), значит построить графики двух функций у=f(x) и у=g(x) и найти точки пересечения этих графиков.
1) Построить параболу у=х² по точкам (-4;16) (-3;9) (-2;4) (-1;1) (0;0) (1;1) (2;4) (3;9) (4;16) и соединить эти точки точки плавной линией от первой до последней.
Построить прямую у=9. Это прямая проходит через точку (0;9) и параллельна оси ох.
Два графика пересекутся в точке, у которой первая координата по оси х равна -3 и в точке, у которой первая координата по оси х равна 3. О т в е т. х=-3; х=3.
2) Аналогично
Построить параболу у=х² по точкам (-4;16) (-3;9) (-2;4) (-1;1) (0;0) (1;1) (2;4) (3;9) (4;16) и соединить эти точки точки плавной линией от первой до последней.
Построить прямую у=4. Это прямая, проходит через точку (0;4) и параллельна оси ох.
Два графика пересекутся в точке, у которой первая координата по оси х равна -2 и в точке, у которой первая координата по оси х равна 2. О т в е т. х=-2; х=2.
1/2
Объяснение:
Прямая пересекает точку (2;1)
Уравнение прямой y=kx (b=0)
k=y/x=1/2=1/2