Аппликация состоит из двух полосок.
1) Если Наташа хочет сделать аппликацию из полосок разного цвета и не имеет значения, как расположены полоски, то вариантов только 3.
Сочетание цветов : жёлтый-красный, жёлтый-синий, красный-синий.
2) Если Наташа хочет сделать аппликацию из полосок разного цвета и имеет значение, как расположены полоски, то вариантов 6 ( см.рис).
Сочетание цветов : жёлтый-красный, красный-жёлтый, жёлтый-синий, синий-жёлтый, красный-синий, синий-красный.
3) Если Наташа хочет сделать аппликацию из полосок любого цвета и не имеет значения, как расположены полоски, то вариантов 6.
Сочетание цветов : жёлтый-жёлтый, красный-красный, синий-синий, жёлтый-красный, жёлтый-синий, красный-синий.
4) Если Наташа хочет сделать аппликацию из полосок любого цвета и имеет значение, как расположены полоски, то вариантов 9.
Сочетание цветов : жёлтый-жёлтый, красный-красный, синий-синий, жёлтый-красный, красный-жёлтый, жёлтый-синий, синий-жёлтый, красный-синий, синий-красный.
ответ: В зависимости от того, какой хочет видеть аппликацию Наташа, ей придётся выбирать из 3, 6 или 9 вариантов.
а) Сколько имеется различных освещения коридора, включая случай когда все лампочки не горят. Как видим, каждая лампочка имеет два состояния (горит/не горит). Т.к. лампочек три, то всего вариантов будет 2³ = 8. Все 8 вариантов представлены на рисунке.
б) Сколько имеется различных освещения, если известно что лампочки №1 и №2 горят или не горят одновременно? Когда лампочки №1 и №2 горят, то лампочка №3 либо горит, либо не горит (2 варианта). Точно также, когда лампочки №1 и №2 не горят, то лампочка №3 тоже либо горит, либо не горит (2 варианта). Итого, 4 варианта. Проверяем по рисунку.
в) Сколько имеется различных освещения, если известно что при горящей лампочке №3 лампочка №2 не горит?
По рисунку считаем варианты - их 6. Когда лампочка №3 горит, то лампочка №2 не горит (по условию), а у лампочки №1 есть 2 варианта - горит/не горит. Когда лампочка №3 не горит, то вариантов у оставшихся лампочек будет 2² = 4. Вот и получается 6 вариантов.
г) сколько имеется различных освещения коридора когда горит большинство лампочек? Т.е. нам надо сосчитать случаи, когда одновременно горят 2 и более лампочек. По рисунку высчитываем, что есть 4 варианта. Или считаем число сочетаний двух лампочек из трёх, плюс число сочетаний три лампочки из трёх.
Итак, 4 варианта.