Решаем через систему уравнений Пусть х - длина, а у - ширина. Если периметр это сумма всех сторон, а в прямоугольнике стороны попарно равны, то х+х+у+у = 40 (Это первое уравнение). Теперь У нас дана разность площадей = 3. Значит разность площадей второго прямоугольника и первого даёт 3. чтобы рассчитать площадь первого достаточно х * у. А чтобы посчитать площадь второго надо (х - 3) * (у+6). (Это второе уравнение.
x + x + y + y = 40 (x - 3)*(y + 6) - (x * y) = 3
Теперь из первого уравнения выражаем У через Х. 2х + 2у = 40 2х = 40 - 2у х = 20 - у И подставляем во второе уравнение
(20 - у - 3)*(у+6) - (20 - у) * у = 3 (17 - у)*(у + 6) - 20у * у^2 =3 17y + 102 - y^2 -6y - 20y + y^2 = 3 -9y + 102 = 3 -9y = -99 y = 11 (Ширина первого прямоугольника) x = 20 - 11 = 9 (Длина первого прямоугольника) S = 11 * 9 = 99см^2
1.
6sin^2x-3sinx*cosx-cos^2x=sin^2x+cos^2x
5sin^2x-3sinx*cosx-2cos^2x=0 /:cos^2x≠0
5tg^2x-3tgx-2=0
замена tgx=t
5t^2-3t-2=0
t=1
t=-2/5
обратная замена:
1) tgx=1
x=pi/4+pik, k∈Z
2) tgx=-2/5
x=-arctg(2/5)+pik, k∈Z
pi/4+pik, k∈Z
-arctg(2/5)+pik, k∈Z
2.
5sin^2x+3sinx*cosx-2cos^2x=3sin^2x+3cos^2x
2sin^2x+3sinx*cosx-5cos^2x=0 /:cos^2x≠0
2tg^2x+3tgx-5=0
замена tgx=t
2t^2+3t-5=0
t=1
t=-5/2
обратная замена:
1) tgx=1
x=pi/4+pik, k∈Z
2) tgx=-5/2
x=-arctg(5/2)+pik, k∈Z
pi/4+pik, k∈Z
-arctg(5/2)+pik, k∈Z