М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
andreyderdi159
andreyderdi159
13.06.2022 12:16 •  Алгебра

Представьте число 8 в виде суммы двух неотрицательных слагаемых так, чтобы произведение квадратов этих слагаемых было наибольшим​

👇
Ответ:
1985alla
1985alla
13.06.2022

4+4=8

4^2*4^2=16*16=256

4,5(40 оценок)
Открыть все ответы
Ответ:
vitalik153fb
vitalik153fb
13.06.2022

Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)

==========

Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.


5. В равнобедренной трапеции диагональ перпендикулярна боковой стороне. Найдите площадь трапеции, ес
4,5(60 оценок)
Ответ:
Foolrelax
Foolrelax
13.06.2022

1) проверяем условие при наименьшем возможном значении n.

n>5, значит проверяем условие при n=6

2^66^2 \\ 6436

Верно!

2) Сделаем предположение, что для всех n=k, k>5 верно неравенство:

2^kk^2

3) Тогда при n=k+1 должно выполняться неравенство:

2^{k+1}(k+1)^2

Вернемся к неравенству из второго пункта и домножим его на 2:

2^kk^2 \ |*2 \\ 2*2^k2k^2 \\ 2^{k+1}2k^2

Подставим 2k² в 3-й пункт и рассмотрим полученное неравенство:

2k^2(k+1)^2 \\ 2k^2k^2+2k+1 \\ k^2-2k-10 \\ \\ k^2-2k-1=0 \\ D=2^2+4*1=8=(2\sqrt{2})^2 \\ \\ k_{1,2}=\frac{2 \pm2\sqrt{2}}{2}=1 \pm \sqrt{2} \\ \\ +++(1-\sqrt{2})---(1+\sqrt{2})+++_k

по методу интервалов определяем, что неравенство k²-2k-1>0 выполняется при  k>1+√2, тогда при k>5 оно тоже выполняется (так как 5>1+√2)

Тогда обратным ходом получаем 2k²>k²+2k+1 при k>5 или 2k²>(k+1)² при k>5

Если 2^{k+1}2k^2, а 2k^2(k+1)^2 , при k>5

То есть, 2^{k+1}2k^2(k+1)^2 , при k>5, то по закону транзитивности:

2^{k+1}(k+1)^2 , при k>5 - ч.т.д

4,8(57 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ