Знаменатель дроби показывает на сколько ровных долей делят, а числитель-сколько таких долей взято.. Чтобы прибавить, или отнять дроби с разными знаменателями, мы приводим к наименьшему общему знаменателю, и прибавляем(или отнимаем) Если числитель и знаменатель дроби умножить или разделить на одно и тоже натуральное число, то получится равная ей дробь. Это значит разделить и числитель и знаменатель на одно и то же число, не равное нулю. Например дробь 2/4 сокращаем на два:1/2.5/10 сокращаем на 5=1/2 незнаю, наверное до бесконечности Дробь называют несократимой тогда, когда сократить эту дробь невозможно...
Перепишем первое уравнение в виде: x + y = -3
Система теперь выглядит так:
x + y = -3
x² + y² = 5
Это чисто метод замены переменной. Пусть x + y = a, xy = b.
Выразим x² + y² через a и b.
(x + y)² = x² + 2xy + y², с учётом замены
a² = x² + 2b + y², откуда
x² + y² = a² - 2b.
Идём далее, с учётом замены перепишем уже систему в следующем виде:
a = -3 a = -3 a = -3
a² - 2b = 5 2b = a² - 5 = 9 - 5 = 4 b = 2
Возвращаемся к старым переменным, учитывая, что x + y = a, xy = b
x + y = -3 y = -3 - x
xy = 2 x(-3-x) = 2 (1)
(1)-3x - x² = 2
x² + 3x + 2 = 0
x1 = -2; x2 = -1
Приходим к двум вариантам:
x = -2 или x = -1
y = -1 y = -2
Система решена