(4-x)(3x-1)(x+8)=0
Объяснение: это выражение будет равно нулю, когда хотя бы один из множителей будет равен нулю, т.е или 4-x = 0
или 3x-1 = 0
или x+8 = 0
4 - x = 0; - x = - 4; x = 4.
3x - 1 = 0; 3x = 1; x, = 1/3.
x + 8 = 0; x = - 8.
ответ: - 8; 1/3; 4.
(x+1)(x^2-x+1)-x(x+3)(x-3) Упростим данное выражение, для этого раскроем скобки. Также заметим, что (x+1)(x^2-x+1) - это формула сокращенного умножения: a³+b³=(a+b)(a²-ab+b²) , где, в нашем случае, a - это x, а b - это x, таким образом, (x+1)(x^2-x+1)=x³+1.
Заметим, (x+3)(x-3) - тоже формула сокращенного умножения - разность квадратов
(x+3)(x-3)=x²-9/ Преобразуем наше выражение, дораскрываем скобки:
(x+1)(x^2-x+1)-x(x+3)(x-3)=x³+1-x(x²-9)=x³+1-x³+9x=9x+1.
Найдем значение выражение при x=1:
9*1+1=10.
Удачи!
Строим равнобедренный треугольник АВС (так как АВ=ВС=10,угол В сверху).
Из угла В вниз до АС строим высоту треугольника (то есть перпендикуляр на сторону АС). Ставим точку Н. Высота поделит АС пополам на АН=НС=(2 корней из 19)/2=корень из 19.
Теперь рассмотрим треугольник АВН. Он прямоугольный. И известна длина его гипотенузы АВ=10 и длина прилежащего у углу А катета АН=корень из 19.
Можно вычислить косинус А=(корень из 19)/10 - отношение прилежащего катета к гипотенузе. Синус найдем из основного тригонометрического тождества:
Косинус"2( А) + синус"2 (А) = 1 ("2 - означает вторую степень)
Синус А=корень из(1-((корень из 19)/10)"2) Решаем это уравнение и получаем
Синус А=корень из(1-(19/100))=корень из(81/100)=9/10 (девять десятых)
ответ синус А = 9/10=0,9
х1 = 4
х2 = 1/3
х3 = - 8
Объяснение:
Один из множителей равен 0
Значит
4-х= 0 или 3х-1=0 или х+8=0
х=4 х=1/3 х = - 8