1. Дан четырёх угольник (лист бумаги) длина = 3, ширина = 4.
После того как его согнули, получается прямоугольный треугольник с катетами 3 и 4,
Для того чтобы найти периметр найдём гипотенузу. Она = 5 (египетский треугольник).
Периметр = 3 + 4 + 5 = 12
2. Хм... Интересно она ползёт.
Найдём разность между растоянием подъёма и спуска. Оно = 18 - 12 = 6. Значит за один день она поднимается на 6 м.
Можно конечно же поделить 60 / 6 и найти сколько дней, но не всё так просто...
Это потом что она может пролезть несколько дней и сделать рывок на 18 метров. Значит 60 - 18 = 42 м. Кол-во дней найдём из частного 42 на 6 и прибавив к этому один день. ответ: 8 Дней.
я тут уже решал подобную задачу столько раз, что не помню, когда был первый.
Точки пересечения биссектрис - это центры окружностей, касающихся левой (или правой) стороны и обеих оснований. Поэтому отрезок, соединяющий эти центры - ЧАСТЬ СРЕДНЕЙ ЛИНИИ :))). Далее, если бы эти центры совпадали, то длина средней линии была бы равна ПОЛУСУММЕ БОКОВЫХ СТОРОН, то есть 14. (в этом случае трапеция была бы "ОПИСАНА ВОКРУГ ОКРУЖНОСТИ", а у таких 4угольников суммы противоположных сторон равны). Поэтому ответ 21-14=7. :)))
(Именно на это расстояние как бы раздвинуты вписаные окружности - пояснение такое :))).
Еще вариант решения, по сути - такой же
Обе точки пересечения биссектрис лежат на одинаковом расстоянии от оснований, это - центры окружностей, касающихся оснований. Одна касается левого ребра 13, другая - правого 15. Если точки касаний делят верхнее основание на отрезки x, у, z, то сразу ясно, что z - искомое расстояние. И есть 3 соотношения.
z+x+y = b;
z+(13-x)+(15-y) = a;
(a + b)/2 = 21
Складываем и делим на 2.
z = 7
Еще вариант решения - проводим спецальную касательную к ЛЕВОЙ ОКРУЖНОСТИ (то есть - с центром в точке F), параллельную СD. Легко видеть, что окружность с центром в F вписана в трапецию с основаниями (13 - z) и (15 - z), где z - ИСКОМОЕ РАССТОЯНИЕ между центрами. Далее - см. начало :)))