1 Число делится на 11, если знакопеременная сумма его цифр (последняя цифра со знаком +) делится на 11.
2 Число делится на 7, если знакопеременная сумма чисел, образованных тройками его цифр, взятыми с конца (последнее число со знаком +), делится на 7.
3 Число делится на 13, если знакопеременная сумма чисел, образованных тройками его цифр, взятыми с конца (последнее число со знаком +), делится на 13.
4 Остаток от деления числа на 11 равен остатку от деления на 11 знакопеременной суммы его цифр (последняя цифра со знаком +)
5 Остаток от деления числа на 7 равен остатку от деления на 7 знакопеременной суммы чисел, образованных тройками его цифр, взятыми с конца (последнее число со знаком +).
6 Остаток от деления числа на 13 равен остатку от деления на 13 знакопеременной суммы чисел, образованных тройками его цифр, взятыми с конца (последнее число со знаком +).
7 Для доказательства необходимо рассмотреть разность между самим числом и знакопеременной суммой его цифр (троек).Комментарии
36; 35; 15;36
Объяснение:
1. Составим систему
х+у=51
х-у=21
х=21+у
21+у+у=51
2у=51-21
2у=30
у=30:2
у=15
х+15=51
х=51-15
х=36
2. В данном случае, в качестве неизвестного Х возьмем количество книг на первой полке, тогда на второй полке будет Х-10 книг. Так как общее количество книг равно 60, то теперь составим уравнение, которое будет иметь вид:
Х + (Х-10) = 60.
Решаем.
2 * Х = 60 + 10
2 * Х = 70
Х = 70 : 2
Х = 35
Таким образом получаем, что на первой полке 35 книг, соответственно на второй будет на 10 меньше и равняется 25.
ответ: на первой полке 35 книг.
3. Представим первое число как 5 частей, а второе как 12 частей.
12-5=7 это разность их частей, то есть 7 частей соответствует 21
21/7=3 это одна часть
5*3=15 это первое число
3*12=36 это второе число
ответ: 15;36
ответ:-х^2-5/3
Объяснение:х^3-25/3х+15 = х^2-5(х-5)/3(х+5) = -х^2-5(х+5)/3(х+5) = -х^2-5/3