М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
HelpMePzhalsta
HelpMePzhalsta
04.10.2022 15:25 •  Алгебра

3. Одна із сторін прямокутника на 3 см більша за другу. Знайдіть периметр цього прямокутника, якщо
його площа дорівнює 88 см2
5.Пароплав пройшов 84 км за течією річки і 48 км
проти течії за 5 год. Знайдіть власну швидкість па-
роплава, якщо швидкість течії дорівнює 2 км/год.

👇
Открыть все ответы
Ответ:
nikgali
nikgali
04.10.2022
Докажем, сначала, что куб числа - монотонная функция.
Монотонная функция -функций, у которой одному значению переменной соответствует только одно значение функции.
Пойдем методом от противного
пусть в точках х и х+с функция принимает одно и то же значение, тогда:
x^3=(x+c)^3
x^3=x^3+3x^2c+3xc^2+c^3
3c *x^2+ 3c^2 *x +c^3=0|:c не равное 0
3x^2+3cx+c^2=0
D=9c^2-4*3c^2=-3c^2<0
Значит не существует такого с, что функция в при нескольких икс принимает одно и то же значение, а значит она монотонна.
Если функция монотонна, то достаточно доказать, что если функция f(х+1) больше функции f(x) -то функция явл возрастающей.
Пусть:
(x+1)^3>x^3
x^3+3x^2+3x+1>x^3
3x^2+3x+1>0
D=9-12=-3<0
Значит уравнение корней не имеет, у параболы ветви вверх, значит она всюду больше 0
Отсюда следует, что:
(x+1)^3>x^3
f(x+1)>f(x)
Значит функция является монотонно возрастающей.
4,4(1 оценок)
Ответ:
Пакмен007
Пакмен007
04.10.2022

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

4,6(78 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ