1) x+y=5
(-2;y)
-2+y=5
y=5+2
y=7
2)4x+5y=20
OX OY
y=0 x=0
4x+5*0=20 4*0+5y=20
4x=20 5y=20
x=5 y=4
A(5;0) B (0;4)
3)x+y=5
(1;4) 1+4=5
(2;3) 2+3=5
(3;2) 3+2=5
(4;1) 4+1=5
(5;0) 5+0=5
4)2x+4y=14
4y=14-2x
y=3,5-0,5x
2x+4(3,5-0,5x)=14
2x+14-2x=14
2x-2x=14-14
0x=0
x - любое число
5)8x-4y=28
8x=28+4y
2x=7+y
x=3,5+0,5y
8(3,5+0,5y)-4y=28
28+4y-4y=28
4y-4y=28-28
0y=0
y - любое число
Объяснение:
Остальные задания с графиками сделай сам
ответ: вот
объяснение:
первый этап. прямой ход гаусса.
исключим элементы 1-го столбца матрицы ниже элемента a1,1. для этого сложим строки 2,3,4 со строкой 1, умноженной на 2,-4,1 соответственно:
1
−4
0
−7
4
0
−7
1
−11
14
0
13
1
33
−14
0
−2
1
−6
8
исключим элементы 2-го столбца матрицы ниже элемента a2,2. для этого сложим строки 3,4 со строкой 2, умноженной на 13/7,-2/7 соответственно:
1
−4
0
−7
4
0
−7
1
−11
14
0
0
20
7
88
7
12
0
0
5
7
−
20
7
4
исключим элементы 3-го столбца матрицы ниже элемента a3,3. для этого сложим строку 4 со строкой 3, умноженной на -1/4:
1
−4
0
−7
4
0
−7
1
−11
14
0
0
20
7
88
7
12
0
0
0
−6
1
делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):
1
−4
0
−7
4
0
1
−
1
7
11
7
−2
0
0
1
22
5
21
5
0
0
0
1
−
1
6
из расширенной матрицы восстановим систему линейных уравнений:
1 x1
−4 x2
+
0 x3
−7 x4
=
4
0 x1
+
1 x2
−
1
7
x3
+
11
7
x4
=
−2
0 x1
+
0 x2
+
1 x3
+
22
5
x4
=
21
5
0 x1
+
0 x2
+
0 x3
+
1 x4
=
−
1
6
базисные переменные x1, x2, x3, x4.
имеем:
x1=
4
+
4
· x2 +
7
· x4
x2=
−2
+
1
7
· x3
−
11
7
· x4
x3=
21
5
−
22
5
· x4
x4=
−
1
6
подставив нижние выражения в верхние, получим решение.
x1=
−
13
10
x2=
−
31
30
x3=
74
15
x4=
−
1
6