Будем считать, что площадь равна 150 кв.ед.
Пусть один катет равен x, второй x + a, гипотенуза x + 2a.
При двух неизвестных надо составить 2 уравнения.
Первое по Пифагору.
x² + (x + a)² = (x + 2a)².
x² + x² + 2ax + a² = x² + 4ax + 4a².
x² - 2ax - 3a² = 0. D = 4a² - 4*1*3a² = 16a². √D = 4a.
x₁ = (2a - 4a)/2 = -a (отрицательное значение не принимаем).
x₂ = (2a + 4a)/2 = 3a.
Второе по площади: (1/2)*x*(x + a) = 150.
x² + ax = 300. Вместо х подставим 3a.
9a² + 3a² = 300.
12a² = 300, a² = 300/12 = 25, a = √25 = 5.
Отсюда находим стороны треугольника.
х = 3а = 3*5 = 15.
х + а = 15 + 5 = 20. Это катеты.
Гипотенуза равна 15 + 2*5 = 25.
3*(1-q^n)=1023*(1-q)
q^(n-1)=256
(1-q^n)=341*(1-q) или, что то же самое: (q^n-1)=341*(q-1)
Вероятно, все ж , q -целое, тогда либо q=2 n=9
либо 4 n=5
либо 16 n=3
256 n=2
Легко видеть, что годится только q=4 n=5
ответ: q=4 n=5
б) 243* (3^(-n)+1)=182*(1/3+1)
243*(1-(-3)^(-n))=182*4/3
729 -3^6*(-3)^(-n)==728
(3^6)*(-3)^(-n)=1
ответ:
n=6
an=243*(-1/(3^5))=-1