а) Преобразуйте выражение, чтобы получить многочлен стандартного вида. Укажите степень многочлена.
(2х² - 2)² - 4х³(х³ + х² - х - 2) + 4(х²)³ + 20х⁹/5х⁴ - 2(4х³ + 1) =
= 4х⁴ - 8х² + 4 - 4х⁶ - 4х⁵ + 4х⁴ + 8х³ + 4х⁶ + 4х⁵ - 8х³ - 2 =
= 8х⁴ - 8х² + 2. Стандартный вид. Степень (х⁴) = 4.
б) Докажите, что при любых целых значениях x многочлен делится на 2.
Вынести общий множитель 2 за скобки;
8х⁴ - 8х² + 2 = 2(4х⁴ - 4х² + 1). Полученное выражение при любых целых значениях х делится на 2.в) Докажите, что при любых действительных значениях x многочлен не может принимать отрицательных значений.
После вынесения общего множителя 2 в скобках будет квадрат суммы, который больше 0 при любом значении
2(4х⁴ - 4х² + 1) = 2(2х² + 1)².
Объяснение:
Коэффициент равен (У2-У1)/(Х2-Х1)=()()
Даны по две точки на каждой функции
(0;5 ) и (7,5;0) на первой (У2-У1)/(Х2-Х1)=(0-5)(7,5-0)=-5/7,5=-2/3
У=аХ+в; 0=-2/3*7,5+в; 0=-5+в; в=5
У=-2/3 Х+5
(-2;-1)(1;0 .)на второй. (У2-У1)/(Х2-Х1)=(0-(-1))(1-(-2))=1/3
У=аХ+в; 0=1/3*1+в; 0=1/3+в; в=-1/3
У=1/3 Х-1/3
Система уравнений
У=-2/3 Х+5
У=1/3 Х-1/3 *2
У=-2/3 Х+5
+
2У=2/3 Х-2/3 получим 3У=5-2/3 3у=4 1/3 У=13/9 У=1 4/9
1 4/9 = 1/3*Х -1/3 13/9 = 1/3*Х -3/9
16/9=1/3 Х
16/3=Х
5 1/3=Х ( 5 1/3; 1 4/9)
ответ: -1; 0.
Объяснение: 1) 3-у+10u=9u+6+2у
4u-12у-2u-у=11-4u-2у
2) -у+10u-9u-2у=6-3
4u-12у-2u-у+4u+2у=11
3) -3у+u=3
6u-11у=11
4) Выразим переменную u из первого уравнения через переменную у.
u=3-(-3у)
5) Подставим выражение 3-(-3у) во второе уравнение вместо переменной u.
6(3-(-3у))-11у=11
6(3+3у)-11у=11
18+18у-11у=11
18у-11у=11-18
7у=-7
у=-7:7
у=-1
6) Подставим значение у в выражение u=3-(-3у).
u=3-(-3*(-1))
u=3-3
u=0
Сделаем проверку: -3*(-1)+0=3 6*0-11*(-1)=11
3+0=3 0+11=11
3=3 11=11