Пусть скорость на лесной тропе х, тогда по шоссе (х+1) , выразим время движения по лесной тропе 6 / x, по шоссе 10 / (x+1) , а всего затрачено 3,5ч значит 6 / x +10 / (x+1)=3,5, решим уравнение относительно х . получается квадратное уравнение: 3,5х^2 - 12,5x-6=0. x1=(12,5+15,5) / 7=4км/ч. х2=(12,5-15,5) / 7= -3/7 ( торицательной скорость быть не может) , значит скорость по лесной тропе х1=4км/ч. Тогда скорость по шоссе 4+1=5км/ч. Время движения по лесной тропе t1=6 / 4=1,5ч, а по шоссе t2=10/5=2ч.
) Рассмотрим точки пересечения данной функции у = - 2 * х + 6:
с осью ОХ. Для этого в формулу функции вставим значение у = 0, тогда (-2 * х + 6) = 0; 2 * х = 6, х = 3;
с осью ОУ. Для этого в формулу функции вставим значение х = 0, тогда получим: у = (-2) * (0) + 6 = 0 + 6 = 6.
Таким образом мы получили следующие точки пересечения с осями координат: с ОХ точка А(3; 0), с ОУ точка В(0;6).
б) проверим точку М(15, -24), подставив значения у = -24 и х = 15 в формулу.
-24 = (-2) * 15 + 6 = -30 + 6 = -24.
Значит, точка М принадлежит графику