М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
fifa48
fifa48
04.01.2021 07:30 •  Алгебра

Коренем рівняння є число:
3х-5=2х+2
7-клас

👇
Ответ:
ttommy
ttommy
04.01.2021

3х-5=2х-2

3х-2х=-2+5

х=3

ответ: х=3.

4,6(34 оценок)
Открыть все ответы
Ответ:
артлжьт
артлжьт
04.01.2021

Нужно использовать следующие свойства числовых неравенств:

1. К обеим частям верного числового неравенства можно прибавить одно и то же число и получится верное числовое неравенство, т.е.:

 если  а < b и с - любое число, то a + c < b + c.

2. Обе части верного числового неравенства можно умножить (разделить) на одно и то же положительное число, при этом получиться верное числовое неравенство; если же число отрицательное, то знак неравенства изменится на противоположный, т.е.:

  если  а < b и с > 0, то ac < bc;

  если  а < b и с < 0, то ac >bc.

Таким образом, если  а < b, то: 2,5а < 2,5b (2,5 > 0),

а затем и 2,5а - 7 < 2,5b - 7.

ответ: 2,5а - 7 < 2,5b - 7.

4,8(56 оценок)
Ответ:
аня2943
аня2943
04.01.2021

Объяснение:

1) ax^2 - (a+3)x + 2 = 0

При а=0 уравнение имеет 1 корень

-3x + 2 = 0; x = 2/3; не подходит.

При а не = 0 будет квадратное уравнение.

D = (a+3)^2 - 4*a*2 = a^2+6a+9-8a = a^2 - 2a + 9 > 0 при любом а не = 0.

Значит, уравнение имеет два корня.

Нам нужно, чтобы корни были разных знаков.

x1 = ((a+3) - √(a^2-2a+9))/2 < 0

x2 = ((a+3) + √(a^2-2a+9))/2 > 0

Умножаем на 2 корни

(a+3) - √(a^2-2a+9) < 0

(a+3) + √(a^2-2a+9) > 0

Отделяем корни

√(a^2-2a+9) > (a+3)

√(a^2-2a+9) > -(a+3)

Корень арифметический, то есть неотрицательный.

При а < -3 корень в 1 неравенстве больше отрицательного числа, что верно при любом а.

Корень во 2 неравенстве при этом больше положительного числа.

a^2-2a+9 > a^2+6a+9

8a < 0; a < 0

Решение а < -3

При а >= -3 и а не = 0 наоборот, корень во 2 неравенстве больше отрицательного числа, а в 1 неравенстве больше положительного.

Неравенство такое же

8a < 0; a < 0

Решение a € [-3; 0)

ответ а < 0

2) x^2 - 2(a-1)x + (2a+1) = 0

Это уравнение квадратное при любом а.

D/4 = (a-1)^2 - (2a+1) = a^2-2a+1-2a-1 = a^2-4a > 0

a(a-4) > 0

a € (-oo; 0) U (4; +oo)

x1 = (a-1) - √(a^2-4a) > 0

x2 = (a-1) + √(a^2-4a) > 0

Если 1 неравенство верно, то 2 неравенство верно автоматически.

√(a^2-4a) < (a-1)

a^2 -4a < a^2-2a+1

4a-2a+1 > 0

2a > -1

ответ: а € (-1/2; 0) U (4; +oo)

4,4(47 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ