По вертикали:
1. Произведение, состоящее из одинаковых множителей (степень) .
2. Какова степень одночлена 7а3b4с (восьмая) .
4. Показатель степени, который обычно не пишут (единица)
5. Слагаемые, отличающиеся только коэффициентами (подобные) .
6. “А ну-ка, отними! ” наоборот (сложение) .
7. Какова степень многочлена 2а6 + а – 1 – 3а4 + а7?
9. Число, при подстановке которого в уравнение, получается верное равенство (корень) .
10. Раздел математики (алгебра) .
По горизонтали:
3. Числовой множитель, стоящий перед буквенным выражением (коэффициент) .
8. Произведение чисел, переменных и степеней переменных (одночлен) .
11. Сумма одночленов (многочлен).
Решаешь как квадратное относительно х, получаешь D=-8(y+5)^2>=0 при у=-5. Подставляешь у=-5, получаешь 3(x^2+6x+9), =>x=-3. Есть еще -2ху, => ищем (ax+by)^2, причем известно, что х=-3, у=-5 , => выделяем (5x-3y)^2:
(5x-3y)^2=25x^2-30xy+9y^2.
В условии есть -2ху, а у нас -30ху, => умножаем условие на 15.
Синтез:
Умножим данное неравенство на 15:
45x^2+15y^2+60y-30xy+330.
Выделяем 25x^2-30xy+9y^2:
(25x^2-30xy+9y^2)+(20x^2+120x+180)+(6y^2+60y+150)==(5x-3y)^2+20(x+3)^2+6(y+5)^2>=0 - очевидно. Доказано!
Объяснение: