А.
любое число со знаком минус во второй степени принимает положительное значение
например:
(-4)^2=16
(-5)^2=25
Б.
любое число со знаком плюс во второй степени принимает положительное значение
например:
2^2=4
3^2=9
В.
если к любому числу со знаком плюс во 2 степени прибавить любое число, то выражение будет принимать положительное значение
например:
2^2+2=6
3^2+2=11
Г.
(x + 2)^2
если к любому числу со знаком плюс прибавить любое число и возвести в квадрат то выражение будет принимать положительное значение.
например:
(2+2)^2=16
(3+3)^2=36
1. Если угловой коэффициент к положителен, линейная функция возрастает. если отрицателен, то убывает. в 1) к=2>0 ; во 2) k=4>0, значит, обе функции возрастают.
второй Используя свойства верных числовых неравенств, докажем, что возрастают функции
1) у = 9 + 2 х
Пусть х₁>х₂, у₁ = 9 + 2 х₁; у₂ = 9 + 2 х₂; тогда 2х₁>2х₂, т.к. умножали на положительное одно и то же число 2, 9+2х₁>9+2х₂, т.к. к обеим частям добалили одно и то же число 9, вывод у₁>у₂, доказано.
2) у = - 8 + 4х
аналогично
Пусть х₁>х₂, у₁ = -8+4х₁; у₂ = -8+4х₂; тогда 4х₁>4х₂, т.к. умножали на положительное одно и то же число 4; -8+4х₁>-8+4х₂, т.к. к обеим частям добалили одно и то же число -8, вывод у₁>у₂, доказано.
2. 1) свои наибольшее и наименьшее значения линейная функция достигает на концах отрезка. т.е. наименьшее равно у(-2)= 1.5-2*6=
-10.5; наибольшее у(1)=1.5+6=7.5
2) квадратичная функция у(7)=11-49=-38-наименьшее значение на указанном отрезке.
ответ:0; 1.4