1) а) (a - 4)(a - 2) = a^2 - 6a + 8
б) (3x + 1)(5x - 6) = 15x^2 - 13x - 6
в) (3y - 2c)(y + 6c) = 3y^2 + 16cy - 12c^2
г) (b + 3)(b^2 + 2b - 2) = b^3 + 5b^2 + 4b - 6
2) а) 2x(a - b) + a(a - b) = (a - b)(2x + a)
б) 3x + 3y + bx + by = 3(x + y) + b(x + y) = (x + y)(3 + b)
3) 0,2y(5y^2 - 1)(2y^2 + 1) = (y^3 - 0,2y)(2y^2 + 1) =
= 2y^5 - 0,4y^3 + y^3 - 0,2y = 2y^5 + 0,6y^3 - 0,2y
4) а) 3x - xy - 3y + y^2 = x(3 - y) - y(3 - y) = (3 - y)(x - y)
б) ax - ay + cy - cx - x + y = a(x - y) - c(x - y) - (x - y) = (x - y)(a - c - 1)
5) Размеры клумбы: x и x+5 м.
Площадь дорожки 26 кв.м., а ширина 1 м. Дорожка показана на рис.
2x + 2(x+5) + 4 = 26
x + x + 5 + 2 = 13
2x = 13 - 7 = 6
x = 3 м - ширина клумбы.
x + 5 = 3 = 5 = 8 м - длина клумбы.
Сторона данного треугольника а(3) равна Р:3=6√3:3=2√3 дм
Формула радиуса окружности, описанной около правильного треугольника:
R=a/√3 =>
R=2√3:√3=2 дм
Формула стороны правильного многоугольника через радиус вписанной окружности:
а(n)=2r•tg(180°:n), где r – радиус вписанной окружности, n – число сторон,
Для правильного шестиугольника tg(180°:n)=tg30°=1/√3
a₆=2•2•1/√3=4/√3
P=6•4/√3=8√3 дм
—————
Как вариант: Правильный шестиугольник состоит из 6 равных правильных треугольников.
На рисунке приложения ОН - радиус описанной около правильного треугольника окружности и в то же время высота одного из 6 правильных треугольников, все углы которого 60°; АВ - сторона шестиугольника. Задача решается с т.Пифагора.
Объяснение:
4х-20-12х+16=2-4х
4х-12х+4х=2-16+20
-4х=6
х=6:(-4)
х=-1.5