1)x²-x+√5=0
D=1 - 4√5
На первый взгляд, все хорошо, но давайте разберёмся с одной вещью:
1-4√5, посмотрите, ведь 4√5 > 1 => D - отрицательное число. А мы знаем, что, если D<0, то корней нет
ответ: корней нет
2)log7 x≥2 Одз: x>0
log7 x≥2log7 7
log7 x≥log7 7²
log7 x≥log7 49
x≥49
Не забываем сравнить с одз:
- +
◎> х
0
- +
●> х
49
=> x ∈ [49;+∞)
ответ: x ∈ [49;+∞)
3)1/(х²+2x-1) <0 одз: х²+2x-1≠0
х1≠ -1+√2
х2≠ -1-√2
Решим данное неравенство методом интервалов, для этого найдём корни уравнения:
х²+2x-1=0
D=4-4*(-1)=8
x1= (-2+2√2)/2 = 2(-1+√2)/2 = -1+√2
х2= (-2-2√2)/2 = 2(-1-√2)/2 = -1-√2
+ - +
◎◎--> х
-1-√2 -1+√2
=> x∈(-1-√2;-1+√2)
ответ: x∈(-1-√2;-1+√2)
Обозначим запланированный пошив спортивных курток в день за (х), тогда за 12 дней было запланировано сшить спортивных курток: 12*х
Однако,
ателье ежедневно шило (х+1) курток, а за 10 дней (12дн.-2д.=10дн.) было сшито:
10*(х+1) и это на 10 курток за эти 10 дней сшито больше, что можно записать уравнением:
12*х-10*(х+1)=10
12х-10х-10=10
2х=10+10
2х=20
х=20:2
х=10 (курток -это количество было запланировано шить ежедневно)
Фактически ателье сшило курток:
10*(10+1)=10*11=110 (курток)
ответ: Ателье пошило 110 спортивных курток