Получаем 4 неравенства: 1) |x|>0 |x-1|>0 (x-2)(x-3)<=0; x1=2; x2=3; используя метод интервалов находим: x=[2;3] 2) |x|<0 |x-1|>0 (-x-2)(x-3)<=0; x1=-2; x2=3 используем тот же метод: x=(-беск;-2] и [3;+беск) 3) |x|>0 |x-1|<0 (x-2)(-x-1)<=0; x1=2; x2=-1; методом интервалов находим: x=(-беск;-1] и [2;+беск) 4) |x|<0 |x-1|<0 (-x-2)(-x-1)<=0; x1=-2; x2=-1 используем метод интервалов: x=[-2;-1] теперь обьеденим эти множетва и получим: x=[-2;-1] и [2;3] ответ: x принадлежит [-2;-1] и [2;3]
и найти все корни уравнения, принадлежащие отрезку [3π/2; 3π]
4* (4² ^sin²x) -6*4^cos2x = 29⇔ 4* 4 ^(2sin²x) -6*4^cos2x = 29 ⇔
4* 4 ^ (1 -cos2x) -6*4^cos2x = 29 ⇔4* 4¹*4^( -cos2x) - 6*4^cos2x = 29 ⇔
4* 4 * 1 / ( 4^cos2x) - 6*4^cos2x = 29 ; * * * можно замена :t =4^cos2x * * *
6* (4^ cos2x)² +29* (4^ cos2x) -16 =0 ;
* * * (4^ cos2x)² +(29/6)* (4^ cos2x)-8/3=0 * * *
a) 4^cos2x = -16 /3 < 0 не имеет решения ;
b) 4^cos2x = 1/2 ⇔2 ^(2cos2x) = 2⁻¹ ⇔2cos2x = -1 ⇔ cos2x = -1/2 .
⇔2x = ±π/3 +2πn ,n ∈Z ;
x = ±π/6 +πn ,n ∈Z .
* * * * * * *
Выделяем все корни уравнения, принадлежащие отрезку [3π/2; 3π] .
3π/2 ≤ - π/6 +πn ≤ 3π ⇔ 3π/2+π/6 ≤ πn ≤ 3π+π/6 ⇔ 5/3 ≤ n ≤ 19/6⇒
n =2 ; 3 .
x₁= - π/6 +2π =11π/6 ; x₂ = - π/6 +3π =17π/6 .
3π/2 ≤ π/6 +πn ≤ 3π ⇔3π/2 -π/6 ≤ πn ≤ 3π -π/6 ⇔4/3 ≤ n ≤ 17/6⇒
n=2
x ₃ = π/6 +2π=13π /6 .