В решении.
Объяснение:
Формула движения: S=v*t
S - расстояние v - скорость t – время
Дано:
S = 280 км
17 км/час - собственная скорость теплохода.
40 часов (всего времени) - 6 часов (стоянка) = 34 часа (в пути).
х - скорость течения реки.
280/(17+х) - время теплохода по течению.
280/(17-х) - время теплохода против течения.
По условию задачи уравнение:
280/(17+х) + 280/(17-х) = 34
Умножить все части уравнения на (17-х)(17+х), чтобы избавиться от дробного выражения.
280 * (17-х) + 280 * (17+х) = 34 * (17-х)(17+х)
4760 - 280х + 4760 + 280х = 9826 - 34х²
9520 = 9826 - 34х²
34х² = 9826 - 9520
34х² = 306
х² = 9
х = √9
х = 3 (км/час) - скорость течения реки.
Проверка:
280/20 + 280/14 = 14 + 20 = 34 (часа), верно.
(-∞ ;-3) => функция выпукла;
(-3; +∞) => функция вогнута;
(-∞ ;-6) <=> f'(x) > 0 => функция возрастает;
(-6; 0) <=> f'(x) < 0 => функция убывает;
(0; +∞) <=> f'(x) > 0 => функция возрастает ;
Объяснение:
1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = 3x2+18x
или
f'(x)=3x(x+6)
Находим нули функции. Для этого приравниваем производную к нулю
x(x+6) = 0
Откуда:
x1 = 0
x2 = -6
(-∞ ;-6) <=> f'(x) > 0 => функция возрастает;
(-6; 0) <=> f'(x) < 0 => функция убывает;
(0; +∞) <=> f'(x) > 0 => функция возрастает ;
В окрестности точки x = -6 производная функции меняет знак с (+) на (-). Следовательно, точка x = -6 - точка максимума. В окрестности точки x = 0 производная функции меняет знак с (-) на (+). Следовательно, точка x = 0 - точка минимума.
2. Найдем интервалы выпуклости и вогнутости функции. Вторая производная.
f''(x) = 6x+18
Находим корни уравнения. Для этого полученную функцию приравняем к нулю.
6x+18 = 0
Откуда точки перегиба:
x1 = -3
(-∞ ;-3) => функция выпукла;
(-3; +∞) => функция вогнута;