Дробь равна нулю, если числитель равен нулю, а знаменатель отличен от нуля. Для решения такого уравнения необходимо либо решить систему (числитель равен нулю, знаменатель отличен от нуля), либо найти нули числители и выбрать из них те, при которых знаменатель не равен нулю.
2x^2 + 3x + 1 = 0;
D = 9 - 8 = 1;
x = (-3±1)/4
x = -1 ИЛИ x = -1/2.
Подставим полученные значения в знаменатель.
x = -1: -1 + 2 -3 +2 = 0 - не корень исходного уравнения.
x = -1/2: -1/8 + 1/2 - 3/2 + 2 ≠ 0 - корень исходного уравнения.
ответ: -1/2.
1) точки пересечения
x^3=x
x^3-x=0
x(x^2-1)=0
x=0
x^2=1 x=-1 x=1
так как эти точки принадлежат прямой у=х то в них у=х
то есть (-1,1) (0,0) (1,1)
2) рассмотрим интервалы x<-1 -1<x<0 0<x<1 x>1
если х будет > х^3 значит прямая будет выше
2.1) x<-1 возьмем х из этого интервала например х=-2
x^3=-8
x>x^3 значит на этом интервале прямая выше
2.2) -1<x<0 например х=-0,5
x^3=-0,125 x<x^3 прямая ниже
2.3) 0<x<1 например х=0,5
x^3=0,125 x>x^3 прямая выше
2.4) x>1 например х=2
x^3=8 x<x^3 прямая выше
таким образом
прямая выше при x<-1 и при 0<x<1
Объяснение: