1.xy-xz+yt-zt-y+z(cпособ группирровки)= (xy-xz)+(yt-zt)-y+z=x(y-z)+t(y-z)-y+z=(y-z)+(x+t)-(y-z)=(y-z)+(x+t);
2.4ac+12bc-2ad-6bd=(4ac+12bc)-(2ab-6bd)=4c(a+3b)-2b(a-3b)=4c(a+3b)+2b(a+3b)=(a+3b)+(4c+2b)=(a+3b)+2(2c+b).
Пусть первое слагаемое равно х, тогда второе слагаемое равно 9-х.
По условию, х-неотрицательно, т.е. х>=0
Составляем функцию:
f(x)=x^2 * 3(9-x)
Находим производную:
f`(x)=(x^2*(27-3x))`=(27x^2-3x^3)`=54x-9x^2=9x(6-x)
Приравниваем производную нулю:
f`(x)=0 при 9x(6-x)=0
х=0 или 6-х=0
х=6
На числовой прямой расставляем точки 0 и 6.
Считаем знаки в полученных промежутках.
Слева направо получаем "-", "+","-".
Значит х=0- точка min
x=6- точка max
Других точек экстремума нет
Следовательно, в точке х=6 функция достигает своего наибольшего значения.
Итак, первое слагаемое равно 6, а второе равно 9-6=3
Доказательство: A и B - острые углы тупоугольного треугольника, значит угол С тупой и
0<A<90,0<B<90,90<C<180 и
cos C<0,cos A>0,cos B>0 (*)
tgA*tgB<1 равносильно неравенству
tgA*tgB-1<0
Рассмотрим левую часть неравенства, используя тригонометрические формулы
tg x=sin x\cos x
cos (A+B)= cosA*cosB- sinAsinB
cos(180-A)=-cos A
и соотношение углов треугольника A+B+C=180 и учитывая (*):
tgA*tgB-1=sinA\cos A*sin B\cos B-1=(sinAsinB-cosA*cosB)\(cos A*cos B)=
=-cos(A+B)\(cos A*cos B)=cos(180-(A+B))\(cos A*cos B)=cos C\(cos A*cos B)<0,
А значит tgA*tgB-1<0, или tgA*tgB<1, что и требовалось доказать.
=(ху-у) (хz+z) (yt-zt)
=(4ac-2ad) (12bc-6bd)
Вроде бы так)