График расположен выше оси ОХ. Точки пересечения с осью ОХ: . Графики функций - это параболы , ветви которых направлены вниз, а вершины в точках (0, а). При х=0 sin0=0 и точка (0,0) является точкой пересечения графика у=|sinx| и оси ОУ, на которой находятся вершины парабол. При а=0 графики y=|sinx| и y=x² имеют одну точку пересе- чения - (0,0), при а<0 точек пересе- чения вообще нет. А при а>0 будет всегда 2 точки пересе- чения этих графиков и соответственно, будет выполняться заданное неравенство. То есть одна точка пересечения при а=0. ответ: а=0.
Пусть расстояние между А и В (s) км, скорость1 первого (х) км/час --ее нужно найти, скорость2 (2х/3) км/час --она в 3/2 раза меньше скорости1, скорость3 ((2х/3)-6) км/час --она на 6 км/час меньше скорости2 время в пути первого: (s/х) час время в пути второго: (s/(2х/3))=(3s)/(2x) час время в пути третьего: (s)/((2х/3)-6)=(3s)/(2x-18) час 10 минут = (1/6) часа 15 минут = (1/4) часа получим систему уравнений: 3s/(2х) = (s/х) + (1/6) второй приехал позже --> время больше 3s/(2х-18) = 3s/(2х) + (1/4) третий приехал позже второго
3s/(2х) = (6s+х)/(6x) 3s/(2х-18) = (6s+х)/(4x)
9sх = x(6s+х) 6sх = (x-9)(6s+х)
3sx = x² 54s+9x = x²
9x = (3x-54)s ---> s = 3x/(x-18) x² = 3x * 3x/(x-18) x-18 = 9 x = 27 (км/час) скорость первого велосипедиста s = 3*27/9 = 9 (км)
ПРОВЕРКА: скорость второго велосипедиста: 27:1.5 = 27*2/3 = 18 км/час его (второго) время в пути: 9:18 = 1/2 часа = 30 минут скорость третьего велосипедиста: 18-6 = 12 км/час его (третьего) время в пути: 9:12 = 3/4 часа = 45 минут время первого велосипедиста в пути: 9:27 = 1/3 часа = 20 минут второй приехал на 30-20=10 минут позже первого))) второй приехал на 30-45=-15 минут раньше третьего)))
График
Точки пересечения с осью ОХ:
Графики функций
которых направлены вниз, а вершины в точках (0, а).
При х=0 sin0=0 и точка (0,0) является точкой пересечения
графика у=|sinx| и оси ОУ, на которой находятся вершины парабол.
При а=0 графики y=|sinx| и y=x² имеют одну точку пересе-
чения - (0,0), при а<0 точек пересе-
чения вообще нет. А при а>0 будет всегда 2 точки пересе-
чения этих графиков и соответственно, будет выполняться
заданное неравенство.
То есть одна точка пересечения при а=0.
ответ: а=0.