В решении.
Объяснение:
Пользоваться этими формулами:
D=b²-4ac = √D=
х₁=(-b-√D)/2a
х₂=(-b+√D)/2a
1. Решить уравнения:
1) x² +8x-13 = 0;
D=b²-4ac = 64+52=116 √D= √4*29 = 2√29;
х₁=(-b-√D)/2a
х₁=(-8 -2√29)/2
х₁= -4 - √29;
х₂=(-b+√D)/2a
х₂=(-8 + 2√29)/2
х₂= -4 + √29.
2) 2x²- 4x-17 = 0;
Разделить уравнение на 2 для упрощения:
x²- 2x - 8,5 = 0;
D=b²-4ac = 4 + 34 = 38 √D= √38 = √4*9,5 = √4*19/2 = 2√19/2;
х₁=(-b-√D)/2a
х₁=(2-2√19/2)/2
х₁=1-√19/2; 19/2 под корнем;
х₂=(-b+√D)/2a
х₂=(2+2√19/2)/2
х₂=1+√19/2; 9/2 под корнем;
3) 9x² +42x+49 =0;
D=b²-4ac = 1764 - 1764 = 0 √D= 0
х=(-b±√D)/2a
х= -42/18
х= -7/3.
4) x² -10x+37 = 0;
D=b²-4ac = 100 - 148 = -48
D < 0
Уравнение не имеет действительных корней.
5) (3x+2)(x-4)=5;
Раскрыть скобки, привести подобные члены:
3х² - 12х + 2х - 8 - 5 = 0
3х² - 10х - 13 = 0
D=b²-4ac = 100 + 156 = 256 √D= 16
х₁=(-b-√D)/2a
х₁=(10-16)/6
х₁= -6/6
х₁= -1;
х₂=(-b+√D)/2a
х₂=(10+16)/6
х₂=26/6
х₂=13/3.
Это 4 варианта. Остальные 4 тома ставим как угодно. Это 24 варианта.
Всего 24*4 = 96 вариантов.
2) Ставим 1 том вторым. Первый - любой, кроме 4. Это 4 варианта. Третьим - тоже любой оставшийся, кроме 4. Это 3 варианта.
Остальные 3 тома как угодно. Это 6 вариантов.
Всего 4*3*6 = 72 варианта.
3) Ставим 1 том третьим. Первый - какой угодно, это 5 вариантов.
Второй - любой, кроме 4. Это 3 варианта.
Четвертый - тоже любой, кроме 4. Это 2 варианта.
Пятый и шестой - какие угодно. Это 2 варианта.
Всего 5*3*2*2 = 60 вариантов.
4) Ставим 1 том четвертым. Это аналогично 3). 60 вариантов.
5) Ставим 1 том пятым. Это аналогично 2). 72 варианта.
6) Ставим 1 том последним. Это аналогично 1). 96 вариантов.
Итого 96 + 72 + 60 + 60 + 72 + 96 = 396 вариантов.