1) точки пересечения
x^3=x
x^3-x=0
x(x^2-1)=0
x=0
x^2=1 x=-1 x=1
так как эти точки принадлежат прямой у=х то в них у=х
то есть (-1,1) (0,0) (1,1)
2) рассмотрим интервалы x<-1 -1<x<0 0<x<1 x>1
если х будет > х^3 значит прямая будет выше
2.1) x<-1 возьмем х из этого интервала например х=-2
x^3=-8
x>x^3 значит на этом интервале прямая выше
2.2) -1<x<0 например х=-0,5
x^3=-0,125 x<x^3 прямая ниже
2.3) 0<x<1 например х=0,5
x^3=0,125 x>x^3 прямая выше
2.4) x>1 например х=2
x^3=8 x<x^3 прямая выше
таким образом
прямая выше при x<-1 и при 0<x<1
Объяснение:
Дана функция у = х² – 6х + 5
а) График, заданный этим уравнением является параболой. Так как а > 0 (коэффициент при х² положительный), ветви параболы направлены вверх.
b)Координаты вершины параболы рассчитываются по формуле:
х₀ = -b/2a = 6/2 = 3
у₀ = 3² – 6*3 + 5 = -4
Координаты вершины параболы ( 3; - 4)
c)Ось симметрии - прямая, перпендикулярная оси Х и параллельна оси У и проходит через вершину параболы.
Формула: Х = -b/2a = 3
d) Найти нули функции. Обычно ищут по дискриминанту:
D = -b ± √b² – 4ac) / 2a
х₁,₂ = (6 ± √36 – 20) / 2
х₁,₂ = (6 ± √16) / 2
х₁,₂ = (6 ± 4) / 2
х₁ = 1
х₂ = 5
Это нули функции, точки, где парабола пересекает ось Х при у=0.
e) Найти дополнительные точки, чтобы можно было построить график. Придаём значения х, получаем значения у:
х = 0 у = 5 (0; 5)
х = -1 у = 12 (-1; 12)
х = 2 у = -3 ( 2; -3)
х = 4 у = -3 (4; -3)
x = 6 y = 5 (6; 5)
Координаты вершины (3; -4)
Точки пересечения с осью Х (1; 0) и (5; 0)
Дополнительные точки: (0; 5) (-1; 12) (2; -3) (4; -3) (6; 5)
Объяснение:
x+2y=7
5x-y=2
x=7-2y
5(7-2y)-y=2
35-11y=2
37=11y
y=35/11
x=7-2*(35/11)