1) у= х2-3х+2
парабола, ветви вверх
2) В(х;у) - вершина
х=3/2 =1,5 у= 2,25-4,5+2 = -0,25 В(1,5; -0,25) - вершина
3) х2-3х+2 = 0
Д= 9-8 = 1
х(1) = (3+1) / 2 = 2
х(2) = (3-1)/ 2 = 1
y=0 при х=1, х=2
4) у>0 при х∈(-∞; 1) U (2; +∞)
у< 0 при х∈(1; 2)
5) для построения чертим координатную плоскость, отмечаем стрелками положительные направления по каждой оси (вверх и вправо),подписываем их (х и у) , отмечаем начало координат (О) и единичные отрезки*
(*) удобнее взять ед отрезок в 2 клетки,
на координатной плоскости отмечаем вершину В, через нее вертикально проводим пунктирную линию - ось симметрии параболы,
ставим нули функции точки (1; 0) и (2; 0)
далее отмечаем точки х=0 у= 2, и симметрично х=3 у= 2
соединяем плавной линией точки. Подписываем график. Всё!
Объяснение:
1 вариант
a=2n+1 - нечетное целое число, n - целое
a³-4a=(2n+1)³-4(2n+1)=8n³+12n²+6n+1-8n-4=8n³+12n²-2n-4+1=
=2*(4n³+6n²-n-2)+1
В сумме первое слагаемое всегда четное, а, если четное увеличить на 1, получим нечетное.
2 вариант
Если а - нечетное, то на 2 оно не делится, значит а³ так же не делится на 2,
4а делится на 2 всегда, так как 4а=2*2*а
Если от нечетного отнять четное, в разности всегда будет нечетное